首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   632篇
  免费   11篇
  国内免费   10篇
测绘学   15篇
大气科学   52篇
地球物理   159篇
地质学   221篇
海洋学   43篇
天文学   82篇
综合类   4篇
自然地理   77篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   5篇
  2018年   9篇
  2017年   10篇
  2016年   18篇
  2015年   4篇
  2014年   10篇
  2013年   38篇
  2012年   15篇
  2011年   21篇
  2010年   29篇
  2009年   31篇
  2008年   34篇
  2007年   30篇
  2006年   26篇
  2005年   22篇
  2004年   22篇
  2003年   19篇
  2002年   10篇
  2001年   13篇
  2000年   19篇
  1999年   16篇
  1998年   13篇
  1997年   12篇
  1996年   18篇
  1995年   8篇
  1994年   4篇
  1993年   15篇
  1992年   7篇
  1991年   13篇
  1990年   9篇
  1989年   14篇
  1988年   5篇
  1987年   5篇
  1986年   6篇
  1985年   9篇
  1984年   5篇
  1983年   15篇
  1982年   17篇
  1981年   4篇
  1979年   10篇
  1978年   7篇
  1977年   5篇
  1975年   6篇
  1974年   7篇
  1973年   8篇
  1971年   3篇
  1930年   3篇
排序方式: 共有653条查询结果,搜索用时 15 毫秒
131.
The Mojanda–Fuya Fuya Volcanic Complex consists of two nearby volcanoes, Mojanda and Fuya Fuya. The older one, Mojanda volcano (0.6 to 0.2 Ma), was first constructed by andesites and high-silica andesites forming a large stratovolcano (Lower Mojanda). This edifice was capped by a basaltic andesite and andesitic cone (Upper Mojanda), which collapsed later to form a 3-km-wide summit caldera, after large phreatomagmatic eruptions. The Lower Fuya Fuya edifice was constructed by the extrusion of viscous Si-rich andesitic lavas and dacitic domes, and the emission of a thick sequence of pyroclastic-flow and fallout deposits which include two voluminous rhyolitic layers. An intermediate construction phase at Fuya Fuya is represented by a mainly effusive cone, andesitic in composition (San Bartolo edifice), the construction of which was interrupted by a major sector collapse in the Late Pleistocene. Finally, a complex of thick siliceous lavas and domes was emplaced within the avalanche amphitheatre, forming the Upper Fuya Fuya volcanic centre. This paper shows that the general evolution from an effusive to an explosive eruptive style is related to a progressive adakitic contribution to the magma source. Although all the rocks of the complex are included in the medium-K field of continental arcs, the Fuya Fuya suite (61–75 wt.% SiO2) shows depletion in Y and HREE and high Sr/Y and La/Yb values, compared to the less silicic Mojanda suite (55–66.5 wt.% SiO2). The Mojanda calc-alkaline suite was generated by partial melting of an adakite-metasomatised mantle source that left a residue with 2% garnet, followed by fractional crystallization of dominant plagioclase + pyroxene + olivine at shallow, intra-crustal depths. For Fuya Fuya, geochemical and mineralogical data suggest either (1) partial melting of a similar metasomatised mantle with more garnet in the residue (4%), followed by fractional crystallization involving plagioclase, amphibole and pyroxene, or (2) mixing of mafic mantle-derived magma from the Mojanda suite and slab melts, followed by the same fractional crystallization process.  相似文献   
132.
Three finite element codes, namely TELEMAC, ADCIRC and QUODDY, are used to compute the spatial distributions of the M2, M4 and M6 components of the tide in the sea region off the west coast of Britain. This region is chosen because there is an accurate topographic dataset in the area and detailed open boundary M2 tidal forcing for driving the model. In addition, accurate solutions (based upon comparisons with extensive observations) using uniform grid finite difference models forced with these open boundary data exist for comparison purposes. By using boundary forcing, bottom topography and bottom drag coefficients identical to those used in an earlier finite difference model, there is no danger of comparing finite element solutions for “untuned unoptimised solutions” with those from a “tuned optimised solution”. In addition, by placing the open boundary in all finite element calculations at the same location as that used in a previous finite difference model and using the same M2 tidal boundary forcing and water depths, a like with like comparison of solutions derived with the various finite element models was possible. In addition, this open boundary was well removed from the shallow water region, namely the eastern Irish Sea where the higher harmonics were generated. Since these are not included in the open boundary, forcing their generation was determined by physical processes within the models. Consequently, an inter-comparison of these higher harmonics generated by the various finite element codes gives some indication of the degree of variability in the solution particularly in coastal regions from one finite element model to another. Initial calculations using high-resolution near-shore topography in the eastern Irish Sea and including “wetting and drying” showed that M2 tidal amplitudes and phases in the region computed with TELEMAC were in good agreement with observations. The ADCIRC code gave amplitudes about 30 cm lower and phases about 8° higher. For the M4 tide, in the eastern Irish Sea amplitudes computed with TELEMAC were about 4 cm higher than ADCIRC on average, with phase differences of order 5°. For the M6 component, amplitudes and phases showed significant small-scale variability in the eastern Irish Sea, and no clear bias between the models could be found. Although setting a minimum water depth of 5 m in the near-shore region, hence removing wetting and drying, reduced the small-scale variability in the models, the differences in M2 and M4 tide between models remained. For M6, a significant reduction in variability occurred in the eastern Irish Sea when a minimum 5-m water depth was specified. In this case, TELEMAC gave amplitudes that were 1 cm higher and phases 30° lower than ADCIRC on average. For QUODDY in the eastern Irish Sea, average M2 tidal amplitudes were about 10 cm higher and phase 8° higher than those computed with TELEMAC. For M4, amplitudes were approximately 2 cm higher with phases of order 15° higher in the northern part of the region and 15° lower in the southern part. For M6 in the north of the region, amplitudes were 2 cm higher and about 2 cm lower in the south. Very rapid M6 tidal-phase changes occurred in the near-shore regions. The lessons learned from this model inter-comparison study are summarised in the final section of the paper. In addition, the problems of performing a detailed model–model inter-comparison are discussed, as are the enormous difficulties of conducting a true model skill assessment that would require detailed measurements of tidal boundary forcing, near-shore topography and precise knowledge of bed types and bed forms. Such data are at present not available.  相似文献   
133.
134.
We present the set-up and the results of a supercritical radiative shock experiment performed with the LULI nanosecond laser facility. Using specific designed targets filled with xenon gaz at low pressure, the propagation of a strong shock with a radiative precursor is evidenced. The main measured quantities related to the shock (electronic density, propagation velocities, temperature, radial dimension) are presented and compared with various numerical simulations.  相似文献   
135.
Borneo occupies a central position in the Sundaland promontory of SE Asia. It has a complex Cenozoic geological history of sedimentation and deformation which began at about the same time that India is commonly suggested to have started to collide with Asia. Some tectonic reconstructions of east and SE Asia interpret a large SE Asian block with Borneo at its centre which has been rotated clockwise and displaced southwards along major strike–slip faults during the Cenozoic due to the indentation of Asia by India. However, the geological history of Borneo is not consistent with the island simply forming part of a large block extruded from Asia. The large clockwise rotations and displacements predicted by the indentor model for Borneo are incompatible with palaeomagnetic evidence and there is no evidence that the major strike–slip faults of the Asian mainland reach Borneo. Seismic tomography shows there is a deep high velocity anomaly in the lower mantle beneath SE Asia interpreted as subducted lithosphere but it can be explained just as well by alternative tectonic models as by the indentor model. Very great thicknesses of Cenozoic sediments are present in Borneo and circum-Borneo basins, and large amounts of sediment were transported to the Crocker turbidite fan of north Borneo from the Eocene to the Early Miocene, but all evidence indicates that these sediments were derived from local sources and not from distant sources in Asia elevated by India–Asia collision. The Cenozoic geological history of Borneo records subduction of the proto-South China Sea and Miocene collision after this ocean lithosphere was eliminated, and a variety of effects resulting from long-term subduction beneath SE Asia. There is little to indicate that India–Asia collision has influenced the Cenozoic geological record in Borneo.  相似文献   
136.
Prediction of future Arctic climate and environmental changes, as well as associated ice-sheet behavior, requires placing present-day warming and reduced ice extent into a long-term context. Here we present a record of Holocene climate and glacier fluctuations inferred from the paleolimnology of small lakes near Istorvet ice cap in East Greenland. Calibrated radiocarbon dates of organic remains indicate deglaciation of the region before ~10,500 years BP, after which time the ice cap receded rapidly to a position similar to or less extensive than present, and lake sediments shifted from glacio-lacustrine clay to relatively organic-rich gyttja. The lack of glacio-lacustrine sediments throughout most of the record suggests that the ice cap was similar to or smaller than present throughout most of the Holocene. This restricted ice extent suggests that climate was similar to or warmer than present, in keeping with other records from Greenland that indicate a warm early and middle Holocene. Middle Holocene magnetic susceptibility oscillations, with a ~200-year frequency in one of the lakes, may relate to solar influence on local catchment processes. Following thousands of years of restricted extent, Istorvet ice cap advanced to within 365 m of its late Holocene limit at ~AD 1150. Variability in the timing of glacial and climate fluctuations, as well as of sediment organic content changes among East Greenland lacustrine records, may be a consequence of local factors, such as elevation, continentality, water depth, turbidity, and seabirds, and highlights the need for a detailed spatial array of datasets to address questions about Holocene climate change.  相似文献   
137.
In part 3 of this series of papers on a new 3-D global troposphericchemical transport model, using an Integrated Modelling System (IMS), anevaluation of the model performance in simulating global distributions andseasonal variations for volatile organic compounds (VOCs) in the atmosphere,is presented. Comparisons of model OH concentrations with previous modelstudies show consistent modelled OH levels from the subtropics tomidlatitudes, while more discrepancies occur over the tropical lowlatitudes, with IMS predicting the highest levels of OH. The close agreementbetween modelled OH concentrations over midlatitudes, where high surfaceNOxand VOC concentrations are also found, is indicative of the strongphotochemical coupling between NOx, VOCs and O3 overthese latitudes. IMSOH concentrations in the Northern Hemisphere (NH) midlatitudes during summerare generally lower than available measurements, implying that models ingeneral are underestimating OH levels at this location and time of year.Substantial differences between model OH concentrations over low latitudesclearly highlight areas of uncertainty between models. IMS OH concentrationsare the highest in general of the models compared, one possible reason isthat biogenic emissions of species such as isoprene and monoterpenes arehighest in IMS, leading to higher O3 levels and hence higher OH.Generally, the IMS VOC concentrations show a similar seasonality to themeasurements at most locations. In general though, IMS tends to underestimatethe NH wintertime VOC maximum and overestimate the NH summertime VOCminimum. Such an overestimate in summer could be due to IMSunderestimating OH levels, or an overestimation of VOC emissions or possiblya problem with model transport, all of these possibilities are explored.Except for n-pentane, the model underprediction of a VOC maximum during theNH winter month strongly suggests a missing emission mechanism in the modelor an underestimate of an existing one. It is very likely that there is alack of time varying emission sources in the model to account for theseasonal change in emission behaviour such as increasing energy usage (e.g.,electricity and gas), road transportation, engine performance, and otheranthropogenic factors which show strong seasonal characteristics. Theanomalous overprediction of wintertime n-pentane compared with its closesummertime prediction with the measurements suggest that emissions in thiscase may be too high.  相似文献   
138.
139.
The photointerpretation accuracy of forest inventory surveys are highly contingent on the sensitometric attributes of aerial films. The sensitometric characteristics of the products that interpreters prefer to work with was determined as a basis for future specifications of 70 mm large-scale photography. Seven black and white and two color films were compared, of which color-positive film was clearly preferred. Of greater significance were the comparison results between the black and white films. Panchromatic films with an average gradient of 0.9 to 1.2 and a density range of 1.0–1.2 were most preferred for forest photo interpretation. Within each black and white film, interpreters preferred the higher contrast images characterized by the higher average gradients. In general, interpreter preference decreased as the spectral sensitivity of the black and white films increased  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号