全文获取类型
收费全文 | 502篇 |
免费 | 17篇 |
国内免费 | 5篇 |
专业分类
测绘学 | 3篇 |
大气科学 | 7篇 |
地球物理 | 162篇 |
地质学 | 250篇 |
海洋学 | 42篇 |
天文学 | 45篇 |
综合类 | 2篇 |
自然地理 | 13篇 |
出版年
2023年 | 4篇 |
2022年 | 10篇 |
2021年 | 12篇 |
2020年 | 10篇 |
2019年 | 7篇 |
2018年 | 38篇 |
2017年 | 26篇 |
2016年 | 32篇 |
2015年 | 19篇 |
2014年 | 40篇 |
2013年 | 45篇 |
2012年 | 20篇 |
2011年 | 32篇 |
2010年 | 37篇 |
2009年 | 34篇 |
2008年 | 25篇 |
2007年 | 20篇 |
2006年 | 23篇 |
2005年 | 13篇 |
2004年 | 6篇 |
2003年 | 5篇 |
2002年 | 7篇 |
2001年 | 10篇 |
2000年 | 5篇 |
1999年 | 7篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 3篇 |
1991年 | 1篇 |
1990年 | 4篇 |
1989年 | 2篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1980年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1973年 | 1篇 |
1972年 | 2篇 |
1971年 | 1篇 |
1970年 | 1篇 |
1969年 | 1篇 |
1949年 | 1篇 |
排序方式: 共有524条查询结果,搜索用时 241 毫秒
91.
Ground water contaminant transport by nondivergence-free, unsteady and nonstationary velocity fields
Pore flow velocity is assumed to be a nondivergence-free, unsteady, and nonstationary random function of space and time for ground water contaminant transport in a heterogeneous medium. The laboratory-scale stochastic contaminant transport equation is up scaled to field scale by taking the ensemble average of the equation by using the cumulant expansion method. A new velocity correction, which is a function of mean pore flow velocity divergence, is obtained due to strict second order cumulant expansion (without omitting any term after the expansion). The field scale transport equations under the divergence-free pore flow velocity field assumption are also derived by simplifying the nondivergence-free field scale equation. The significance of the new velocity correction term is investigated on a two dimensional transport problem driven by a density dependent flow. 相似文献
92.
93.
Serkan Üner Gülçin Özürlan Ağaçgözgü Doğa Düşünür Doğan 《Geophysical Prospecting》2019,67(8):2176-2195
Western Anatolia hosts many low-to-moderate and high-temperature geothermal sources in which active faults play a dominant role to control the recharge and the discharge of geothermal fluid. In this study, we used the two-dimensional geoelectric structure of Kütahya Hisarcık geothermal field, and created a conceptual hydrogeophysical model that includes faults, real topographical variations and geological units. The temperature distribution and fluid flow pattern are also investigated. The depth extension of Hisarcık Fault, electrical basement and low resistivity anomalies related to the presence of geothermal fluid are determined by using resistivity studies in the area. Numerical simulations suggest that Hisarcık fault functioning as a fluid conduit primarily enables hot fluid to be transported from depth to the surface. It is shown that the locations of predicted outflow vents coincide with those of hot springs in the area. 相似文献
94.
İrfan Akca Thomas Günther Mike Müller‐Petke Ahmet T. Başokur Ugur Yaramanci 《Geophysical Prospecting》2014,62(2):364-376
Magnetic resonance sounding (MRS) has increasingly become an important method in hydrogeophysics because it allows for estimations of essential hydraulic properties such as porosity and hydraulic conductivity. A resistivity model is required for magnetic resonance sounding modelling and inversion. Therefore, joint interpretation or inversion is favourable to reduce the ambiguities that arise in separate magnetic resonance sounding and vertical electrical sounding (VES) inversions. A new method is suggested for the joint inversion of magnetic resonance sounding and vertical electrical sounding data. A one‐dimensional blocky model with varying layer thicknesses is used for the subsurface discretization. Instead of conventional derivative‐based inversion schemes that are strongly dependent on initial models, a global multi‐objective optimization scheme (a genetic algorithm [GA] in this case) is preferred to examine a set of possible solutions in a predefined search space. Multi‐objective joint optimization avoids the domination of one objective over the other without applying a weighting scheme. The outcome is a group of non‐dominated optimal solutions referred to as the Pareto‐optimal set. Tests conducted using synthetic data show that the multi‐objective joint optimization approximates the joint model parameters within the experimental error level and illustrates the range of trade‐off solutions, which is useful for understanding the consistency and conflicts between two models and objectives. Overall, the Levenberg‐Marquardt inversion of field data measured during a survey on a North Sea island presents similar solutions. However, the multi‐objective genetic algorithm method presents an efficient method for exploring the search space by producing a set of non‐dominated solutions. Borehole data were used to provide a verification of the inversion outcomes and indicate that the suggested genetic algorithm method is complementary for derivative‐based inversions. 相似文献
95.
In this study, the adsorption of reactive red 120 (RR 120) on pistachio husk, and the modeling of the adsorption was investigated. Characterization of the pistachio husk was confirmed by Fourier transform infrared spectroscopy. The pHzpc of pistachio husk was found to be pH 8.5. Increasing the initial pH value decreased (p < 0.01) the amount of dye adsorbed. However, increasing the initial dye concentration from 50 to 900 mg/L at pH 1 increased (p < 0.01) the equilibrium dye uptake from 20.83 to 182.10 mg/g. Results indicated that this adsorbent had great potential for the removal of RR 120 dye. The logistic model was found to be the most suitable of the kinetic and equilibrium models tested to describe the adsorption of the dye. The parameters determined from the logistic model were well correlated with the initial dye concentration, and were seen to increase with the increasing initial dye concentration, but this was not observed from pseudo‐second order kinetics. 相似文献
96.
O. Algan N. Çağatay A. Tchepalyga D. Ongan C. Eastoe E. Gökaşan 《Geo-Marine Letters》2001,20(4):209-218
The sediment infill over the Paleozoic bedrock in the Bosphorus Strait consists of four sedimentary units which were deposited in the last 26,000 14C years B.P. The stratigraphy of these units suggests that this part of the Bosphorus was a freshwater lake between 26,000 and 5,300 14C years B.P., depositing sands with a freshwater mollusc fauna of Black Sea neo-euxinian affinity (Dreissena rostriformis, Dreissena polymorpha, and Monodacna pontica). The first appearance of euryhaline Mediterranean molluscs (e.g., Ostrea edulis, Mytilus edulis) was observed at 5,300 14C years B.P. in this part of the Bosphorus. Deposition of coarse Mytilus-bank and Ostrea-bank units suggests that the establishment of the present dual-flow regime in the Bosphorus took place at about 4,400 14C years B.P. 相似文献
97.
Because the mixture of seawater and freshwater in the Gyeongin-Ara Waterway in South Korea can lead to the intrusion of saline water into surrounding aquifers, systematic management through the establishment of a groundwater protection area is required. The analytic hierarchy process (AHP) model is used to delineate this protection area based on two primary factors and five secondary factors related to saline water intrusion. The study area is divided into 987 gridded cells with a unit size of 100 × 100 m, and the final evaluation score for each cell is calculated using the AHP model. Consequently, several artificial neural network models based on a multilayer perceptron are developed using the AHP’s secondary criteria and the evaluation score. Comparing the evaluation scores of ANN and AHP, more than 180 samples are required in the ANN model to insure high R2 between the original and estimated values. The ANN model is more consistent than the AHP model when determining groundwater protection area, because it can be re-constructed due to the changes in some secondary criteria and also changed due to a standardization process. The final evaluation score by the ANN model based on 300 samples, with the highest R2, is calculated and the regions with a score higher than 2.0 are selected as the groundwater protection area, accounting for 15% of the total cells. This area is similar to the range within approximately 200 m of the GA Waterway and also includes some changing sites in hydrogeochemistry and electric conductivity, which is produced by saline water intrusion. If the land-use type, groundwater levels, and some other criteria change at any cell, the ANN model can be re-executed to verify whether the cell belongs to a groundwater protection area. Considering that salinity of groundwater near the waterway can be affected by various factors including well depth, pumping conditions, and groundwater levels, the ANN model, which is a non-linear model, can be more effective for prediction than the AHP model. 相似文献
98.
A good number of empirical formulae and methods dealing with the analysis of the effects of blast-induced ground vibrations have been developed. The most common approach suggested for estimating the attenuation of particle velocity on the ground is to scale the distance (scaled distance, SD). This approach makes it possible to estimate the peak particle velocity when the amount of explosive charge or the distance or both are altered.Many parameters known to have an influence on particle velocity have been used for particle velocity prediction equations. Some of these parameters are maximum charge per delay, the distance between the station and shot location, burden, inelastic attenuation factor and site factors. However, the impacts of the discontinuities existing on the benches where blasts are detonated on the propagation velocity of seismic waves have not been taken into consideration in these equations.This study aims to examine the impacts of the discontinuity frequency parameter derived through geological measurements carried out on the blasting benches or nearby in a quarry mine (Supren, Eskisehir) in Turkey on the propagation of blast-induced ground vibrations. Developed based on the geological observations carried out on the benches, the model was formed by adding discontinuity frequency parameter to the particle velocity prediction model suggested by Nicholls et al. [Nicholls HR, Johnson CF, Duvall WI. Blasting vibrations and their effects on structures. Bulletin no. 656. Washington, DC: US Bureau of Mines; 1971]. In order to research the effect of the discontinuity frequency in the bench on the blast-induced ground vibrations, the relationship between the recorded peak particle velocity, scaled distance and discontinuity frequency was statistically evaluated for the site. The established relationship and the results of the study are presented. 相似文献
99.
Eser Çaktı 《Natural Hazards》2013,68(1):227-228
Istanbul today is probably unique in the world not only in terms of the recognition of its earthquake risk by its inhabitants and administrators, but also in terms of significant steps taken in a such a short time toward the mitigation of its earthquake vulnerabilities. This paper, however, deals with the issues that still remain unattended. 相似文献
100.
Keiichi Tadokoro Masataka Ando Şerif Bariş Kin'ya Nishigami Mamoru Nakamura S. Balamir Ücer Akihiko Ito Yoshimori Honkura A. Mete Işikara 《Journal of Seismology》2002,6(3):411-417
The North Anatolian fault zone that ruptured during the mainshock of theM 7.4 Kocaeli (Izmit) earthquake of 17 August 1999 has beenmonitored using S wave splitting, in order to test a hypothesisproposed by Tadokoro et al. (1999). This idea is based on the observationof the M 7.2 1995 Hyogo-ken Nanbu (Kobe) earthquake, Japan.After the Hyogo-ken Nanbu earthquake, a temporal change was detectedin the direction of faster shear wave polarization in 2–3 years after the mainshock (Tadokoro, 1999). Four seismic stations were installed within andnear the fault zone at Kizanlik where the fault offset was 1.5 m, about80 km to the east of the epicenter of the Kocaeli earthquake. Theobservation period was from August 30 to October 27, 1999. Preliminaryresult shows that the average directions of faster shear wave polarization attwo stations were roughly parallel to the fault strike. We expect that thedirection of faster shear wave polarization will change to the same directionas the regional tectonic stress reflecting fault healing process. We havealready carried out a repeated aftershock observation at the same site in2000 for monitoring the fault healing process. 相似文献