首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1835篇
  免费   76篇
  国内免费   24篇
测绘学   46篇
大气科学   146篇
地球物理   469篇
地质学   750篇
海洋学   171篇
天文学   261篇
综合类   12篇
自然地理   80篇
  2023年   10篇
  2022年   15篇
  2021年   32篇
  2020年   29篇
  2019年   39篇
  2018年   59篇
  2017年   58篇
  2016年   83篇
  2015年   45篇
  2014年   62篇
  2013年   101篇
  2012年   77篇
  2011年   128篇
  2010年   91篇
  2009年   133篇
  2008年   93篇
  2007年   79篇
  2006年   79篇
  2005年   67篇
  2004年   68篇
  2003年   53篇
  2002年   47篇
  2001年   25篇
  2000年   26篇
  1999年   27篇
  1998年   18篇
  1997年   17篇
  1996年   12篇
  1995年   16篇
  1994年   20篇
  1993年   14篇
  1992年   8篇
  1991年   14篇
  1990年   10篇
  1987年   10篇
  1986年   13篇
  1985年   10篇
  1984年   15篇
  1982年   17篇
  1981年   14篇
  1980年   15篇
  1977年   9篇
  1976年   9篇
  1975年   8篇
  1974年   11篇
  1973年   10篇
  1971年   14篇
  1970年   9篇
  1967年   7篇
  1959年   7篇
排序方式: 共有1935条查询结果,搜索用时 328 毫秒
31.
In an assessment of the influence of internal rock moisture content on Schmidt hammer readings, rebound (R) values are found to decrease with increasing moisture content. For samples of basalt, sandstone and dolerite the maximum decrease in R‐values is found between oven dry values and saturated rock rebound values, the magnitude of which varies from 2 to 10 points on the R‐scale. A quartzite block has the greatest decline of 6 points at 60 per cent saturation. For certain rock types under differing site‐to‐site field moisture conditions the moisture effect can be a significant factor in the interpretation of the relative state of weathering from rebound values. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
32.
A combined volcanological, geochemical, paleo-oceanological, geochronological and geophysical study was undertaken on the Kurile Basin, in order to constrain the origin and evolution of this basin. Very high rates of subsidence were determined for the northeastern floor and margin of the Kurile Basin. Dredged volcanic samples from the Geophysicist Seamount, which were formed under subaerial or shallow water conditions but are presently located at depths in excess of 2300 m, were dated at 0.84±0.06 and 1.07±0.04 Ma with the laser 40Ar/39Ar single crystal method, yielding a minimum average subsidence rate of 1.6 mm/year for the northeast basin floor in the Quaternary. Trace element and Sr–Nd–Pb isotope data from the volcanic rocks show evidence for contamination within lower continental crust and/or the subcontinental lithospheric mantle, indicating that the basement presently at 6-km depth is likely to represent thinned continental crust. Average subsidence rates of 0.5–2.0 mm/year were estimated for the northeastern slope of the Kurile Basin during the Pliocene and Quaternary through the determination of the age and paleo-environment (depth) of formation of sediments from a canyon wall. Taken together, the data from the northeastern part of the Kurile Basin indicate that subsidence began in or prior to the Early Pliocene and that subsidence rates have increased in the Quaternary. Similar rates of subsidence have been obtained from published studies on the Sakhalin Shelf and Slope and from volcanoes in the rear of the Kurile Arc. The recent stress field of the Kurile Basin is inferred from the analysis of seismic activity, focal mechanism solutions and from the structure of the sedimentary cover and of the Alaid back-arc volcano. Integration of these results suggests that compression is responsible for the rapid subsidence of the Kurile Basin and that subsidence may be an important step in the transition from basin formation to its destruction. The compression of the Kurile Basin results from squeezing of the Okhotsk Plate between four major plates: the Pacific, North American, Eurasian and Amur. We predict that continued compression could lead to subduction of the Kurile Basin floor beneath Hokkaido and the Kurile Arc in the future and thus to basin closure.  相似文献   
33.
The aquatic macrofauna of the Guadalquivir estuary were sampled (1 mm mesh persiana net) at 5 sampling sites located along the entire (except the tidal freshwater region) estuarine gradient of salinity (outer 50 km). A total of 134 fish and macroinvertebrate species was collected but only 62 were considered common or regularly present in the estuary. Univariate measures of the community structure showed statistically significant differences among sampling sites: species richness, abundance, and biomass decreased in the upstream direction, being positively correlated with the salinity. Temporal differences of these three variables were also statistically significant. While a clear seasonal pattern (minimum densities in winter and maximum in spring-summer) was observed for abundance and biomass, no such pattern existed for the number of species. Mysids was the most dominant group throughout the estuary (96% to 99% of abundance; 49% to 85% of biomass), although fish biomass was also important at the outer estuary (36% to 38%). Multivariate analyses indicated highly significant spatial variation in the macrofaunal communities observed along the salinity gradient. These analyses suggest that the underlying structure was a continuum with more or less overlapping distributions of the species dependent on their ability to tolerate different physicochemical conditions. There were also significant temporal (intermonthly + interannual) variation of the estuarine community; the relative multivariate dispersion indicated that monthly variation was more considerable (relative multivariate dispersion >1) at the outer part of the estuary during the wet year (last 20 km) and was higher in the inner stations during the dry year (32 to 50 km from the river mouth). Since a clear negative exponential relationship was observed between the freshwater input (from a dam located 110 km upstream) and water salinity at all sampling stations, it is concluded that the human freshwater management is probably affecting the studied estuarine communities. While the higher seasonal (long-term) stability of the salinity gradient, due to the human control of the freshwater input, may facilitate the recruitment of marine species juveniles during the meteorologically unstable early-spring, the additional (short-term) salinity fluctuations during the warm period may negatively affect species that complete their lifecycle within the estuary.  相似文献   
34.
The differentiation of units in the Sierra de Almagro has been a source of controversy. There were defined the Almagride and Ballabona–Cucharón complexes, the former considered by several authors as part of a Subbetic metamorphosed and outcropping in a tectonic window. In this study, the units of Ballabona, Almagro and Cucharón are integrated into a single one, that of Tres Pacos, because they correspond to different parts of the same stratigraphic series. This unit is tectonically over the Nevado–Filabride Complex. The existence of the Almagride and Ballabona–Cucharón complexes is discarded and their units form part of the Alpujarride Complex. To cite this article: C. Sanz de Galdeano, F.J. Garc??a Tortosa, C. R. Geoscience 334 (2002) 355–362.  相似文献   
35.
An eddy covariance (EC) station was deployed at Solfatara crater, Italy, June 8–25, 2001 to assess if EC could reliably monitor CO2 fluxes continuously at this site. Deployment at six different locations within the crater allowed areas of focused gas venting to be variably included in the measured flux. Turbulent (EC) fluxes calculated in 30-min averages varied between 950 and 4460 g CO2 m−2 d−1; the highest measurements were made downwind of degassing pools. Comparing turbulent fluxes with chamber measurements of surface fluxes using footprint models in diffuse degassing regions yielded an average difference of 0% (±4%), indicating that EC measurements are representative of surface fluxes at this volcanic site. Similar comparisons made downwind of degassing pools yielded emission rates from 12 to 27 t CO2 d−1 for these features. Reliable EC measurements (i.e. measurements with sufficient and stationary turbulence) were obtained primarily during daytime hours (08:00 and 20:00 local time) when the wind speed exceeded 2 m s−1. Daily average EC fluxes varied by ±50% and variations were likely correlated to changes in atmospheric pressure. Variations in CO2 emissions due to volcanic processes at depth would have to be on the same order of magnitude as the measured diurnal variability in order to be useful in predicting volcanic hazard. First-order models of magma emplacement suggest that emissions could exceed this rate for reasonable assumptions of magma movement. EC therefore provides a useful method of monitoring volcanic hazard at Solfatara. Further, EC can monitor significantly larger areas than can be monitored by previous methods.  相似文献   
36.
For Central Greenland, water isotope analysis indicates a temperature difference of about 10°C since the Last Glacial Maximum (LGM). However, borehole thermometry and gas diffusion thermometry indicate that LGM surface temperatures were about 20°C colder than today. Two general circulation model studies have shown that changes in the seasonal precipitation timing in Central Greenland might have caused a warm bias in the LGM water isotope proxy temperatures, and that this bias could explain the difference in the estimated paleotemperatures. Here we present an analysis of a number of atmospheric general circulation model simulations mostly done within the framework of the Paleoclimate Modeling Intercomparison Project. The models suggest that the seasonal cycle of precipitation and surface mass balance over Central Greenland at the LGM might have been very different from today. This supports the idea that the accuracy of the water isotope thermometry at the LGM in Greenland might be compromised as a result of a modified surface mass balance seasonality. However, the models disagree on the amplitude and sign of the bias. For Central East Antarctica, a strong seasonality effect on the LGM isotopic signal is not simulated by any of the analyzed models. For the mid-Holocene (6 kyr BP) the models suggest relatively weak isotope paleothermometry biases linked to changes in the surface mass balance seasonality over both ice sheets.  相似文献   
37.
The Borborema Province (BP) of northeastern Brazil is a complex crustal assemblage, which has undergone a polycyclic evolution during the Proterozoic. In the Piancó-Alto Br??gida belt, a metamorphosed leucosome vein inserted in amphibolites has a trace element pattern suggesting a T-MORB protolith. Apatites yield a REE pattern indicating growth in equilibrium with garnet, thus pointing to its metamorphic origin. UPb analyses yield an age of 540±5 Ma interpreted as a cooling age following amphibolite facies regional metamorphism associated with granitic emplacement at ca. 580 Ma. The resulting slow cooling rates (ranging from ca. 2.5 to 5 °C Ma?1) are consistent with underplating of mafic magmas, or crustal thickening caused by nappe stacking, as possible processes governing the metamorphic evolution of the BP. To cite this article: B. Dhuime et al., C. R. Geoscience 335 (2003).  相似文献   
38.
The impact of volcanic eruptions on forest ecosystems can be investigated using dendrochronological records. While long-range effects are usually mediated by decreased air temperatures, resulting in frost rings or reduced maximum latewood density, local effects include abrupt suppression of radial growth, occasionally followed by greater than normal growth rates. Annual rings in Mexican mountain pine (Pinus hartwegii Lindl.) on Nevado de Colima, at the western end of the Mexican Neovolcanic Belt, indicate extremely low growth in 1913 and 1914, following the January 1913 Plinian eruption of Volcán de Fuego, 7.7 km to the south. That event, which is listed among the largest explosive eruptions since A.D. 1500, produced ashflow deposits up to 40 m thick and blanketed our study area on Nevado de Colima with a tephra fallout 15–30 cm deep. Radial growth reduction in 1913–14 was ≥30% in 73% of the sampled trees. We geostatistically investigated the ecological impact of the eruption by mapping the decrease in xylem increment and found no evidence of a spatial structure in growth reduction. Little information has been available to date on forest species as biological archives of past environments in the North American tropics, yet this historical case study suggests that treeline tropical sites hold valuable records of prehistoric phenomena, including volcanic eruptions.  相似文献   
39.
The Quepos, Nicoya and Herradura oceanic igneous terranes in Costa Rica are conspicuous features of a Mid to Late Cretaceous regional magmatic event that encompasses similar terranes in Central America, Colombia, Ecuador and the Caribbean. The Quepos terrane (66?Ma), which consists of ol-cpx phyric, tholeiitic pillow lavas overlain by highly vesicular hyaloclastites, breccias and conglomerates, is interpreted as an uplifted seamount/ocean island complex. The Nicoya (~90?Ma) and Herradura terranes consist of fault-bounded sequences of sediments, tholeiitic volcanics (pillow lavas and massive sheet flows) and plutonic rocks. The volcanic rocks were emplaced at relatively high eruption rates in moderate to deep water, possibly forming part of an oceanic plateau. Major and trace element data from Nicoya/Herradura tholeiites indicate higher melting temperatures than inferred for normal mid-ocean-ridge basalts (MORB) and/or a different source composition. Sr–Nd–Pb isotopic ratios from all three terranes are distinct from MORB but resemble those from the Galápagos hotspot. The volcanological, petrological and geochemical data from Costa Rican volcanic terranes, combined with published age data, paleomagnetic results and plate tectonic reconstructions of this region, provide strong evidence for a Mid Cretaceous (~90Ma) age for the Galápagos hotspot, making it one of the oldest known, active hotspots on Earth. Our results also support an origin of the Caribbean Plate through melting of the head of the Galápagos starting plume.  相似文献   
40.
The buried Chicxulub impact structure is marked by a dramatic ring of sinkholes (called cenotes if containing water), and adjacent less prominent partial rings, which have been shown to coincide with maxima in horizontal gravity gradients and a topographic depression. These observations, along with the discreteness and spacing of the features, suggest a formation mechanism involving faulting in the outer slump zone of the crater, which would thus have a diameter of approximately 180 km.
An opposing view, based primarily on the interpretation of gravity data, is that (he crater is much larger than the cenote ring implies. Given the association of the known cenote ring with faults, we here examine northern Yucatan for similar rings in gravity, surface features and elevation, which we might expect to be associated with outer concentric faults in the case of a larger, possibly multiring, structure.
No such outer rings have been found, although definite patterns are seen in the distribution of karst features outside the crater rim. We explain these patterns as resulting mainly from deformation related to the block fault zone that parallels tbe shelf edge of eastern Yucatan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号