首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1926篇
  免费   594篇
  国内免费   724篇
测绘学   380篇
大气科学   182篇
地球物理   567篇
地质学   1389篇
海洋学   298篇
天文学   17篇
综合类   180篇
自然地理   231篇
  2024年   30篇
  2023年   67篇
  2022年   153篇
  2021年   165篇
  2020年   143篇
  2019年   169篇
  2018年   130篇
  2017年   135篇
  2016年   154篇
  2015年   146篇
  2014年   155篇
  2013年   144篇
  2012年   161篇
  2011年   174篇
  2010年   165篇
  2009年   164篇
  2008年   173篇
  2007年   136篇
  2006年   135篇
  2005年   121篇
  2004年   97篇
  2003年   57篇
  2002年   68篇
  2001年   66篇
  2000年   47篇
  1999年   17篇
  1998年   9篇
  1997年   10篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1988年   2篇
  1986年   4篇
  1985年   6篇
  1982年   3篇
  1981年   5篇
  1979年   6篇
  1978年   2篇
  1965年   2篇
  1964年   1篇
  1957年   1篇
  1954年   1篇
排序方式: 共有3244条查询结果,搜索用时 15 毫秒
881.
Earthquakes commonly occur in the sliding surface of the fault zone. The morphology of the sliding surface is the result of fault activities, and also it evolves with the activities. The irregular geometry of the fault plane affects the sliding resistance, the concentration and anisotropy of the stress distribution within the fault plane and the fault shear strength. So, the acquisition of high-precision morphological features is of great significance for studying the correlation between fault surface morphology and seismic nucleation, fracture propagation and termination. Due to the lack of reliable micron-scale morphological measurement apparatus, the study of the coherence of the fault surface morphology from large scale(unit: m-cm)to small scale(unit: μm)is subject to restrictions, as well as the study of the relationship between the micro-morphology of the experimental frictional surface and the rupture process. In order to improve the measurement accuracy of the fault plane and overcome the shortcomings of existing measurement methods, we have invented a morphology measurement system with independent intellectual property rights.
The measuring principle of this morphology measurement system is based on the laser rangefinder theory. The frame of this system consists of four parts: Braced Frame, Moving Scanner Unit, System-Controlling Unit and Data Collection Unit. Braced Frame is made up of high-adjustable frame, loading stage, dust-proof box and isolation platform, which is used to provide a vibration isolation, light proof and dust-proof measuring environment. Moving Scanner Unit contains a laser head and a two-dimensional translation stag, the laser head is used to measure vertical distance and a two-dimensional translation stage carrying a laser head moving in X-axis and Y-axis orientation to provide X, Y coordinate values. System-Controlling Unit includes two-dimensional translation stage controller, laser head controller and signal convertor. The function of this part is mainly to control operation of other parts. The Data Collection Unit is composed of computer system and software module. This part connects other parts for receiving and storing data. In order to improve the scan efficiency, we developed new software by which we can precisely control the measuring process and efficiently process the acquired data. The software is comprised of five modules: 1)Move Module, this module is used to control the original moving of the laser head relative to the two-dimension translation stage and display the 3-dimensional coordinate information in real time; 2)Set Parameters of Scan Area, the function of this module is to obtain the XY coordinate values of four corner points of the target area to scan; 3)Scan Method Module, though this part, we can control the point spacing in the X-axis orientation by inputting velocity of laser header, as well as the point spacing in X-axis orientation by inputting the Y-step parameter; 4)Pre-Scan Module, there are three functions in this module to inspect whether the z-value of the target area is beyond the range of the laser head or not, estimate consuming time for scanning the object area under the predefined parameters and to estimate the size of the result file; and 5)Scan Module, the function of this module is to store the scanning data.
We scanned the camera lens and the standard plate whose standard deviations are lower than 5μm to acquire the precision of the measurement system, and the results show that the precision of the plane positioning (X-axis and Y-axis direction)is better than 3.5μm; the vertical measurement precision is better than 4.5μm. The highest resolution of the measurement system is constrained by the performance of the laser head and two-dimension translation stage, and the horizontal resolution can reach 0.62μm, vertical resolution 0.25μm. When the needed resolution is lower than the highest, we can achieve it through adjusting the parameter of the velocity in the X-axis orientation and steps in the Y-axis orientation. To test the practical effect of the measurement system, we scanned an area of frictional surface of experimental rock using this system and obtained a high-resolution topography data. From the DEM interpolated from the cloud data, we can observe the striation on the fault plane and the variation of the roughness distribution. The roughness and slope distribution results show that the topography measurement system can meet our requirements for analyzing the microscopic morphology on the micrometer scale.
Compared with traditional measurement devices, the morphology measurement system has the following advantages: 1)The measurement system can obtain the data even in a valley region with a large dip angle on the surface because the vertically emitted beam by the laser head is practically perpendicular to the surface. So compared with other means, it can avoid producing a blank area of measurements and get a complete area; 2)the measurement system has a larger measurement range of 30cm×30cm. When the high-resolution measurement is performed on a large scale, the error caused by the registration of multiple measurement results can also be avoided.  相似文献   
882.
Located among the South China block, Tibetan plateau, Alxa block and Yinshan orogenic belt, the Ordos block is famous for its significant kinematic features with stable tectonics of its interior but frequent large earthquakes surrounding it. After the destruction of the North China Craton, the integrity, rotation movement and kinematic relations with its margins are hotly debated. With the accumulation of active tectonics data, and paleomagnetic and GPS observations, some kinematic models have emerged to describe rotation movement of the Ordos block since the 1970's, including clockwise rotation, anticlockwise rotation, clockwise-anticlockwise-alternate rotation, and sub-block rotation, etc. All of these models are not enough to reflect the whole movement of the Ordos block, because the data used are limited to local areas.
In this study, based on denser geophysical observations, such as GPS and SKS splitting data, we analyzed present-day crustal and mantle deformation characteristics in the Ordos block and its surrounding areas. GPS baselines, strain rates, and strain time series are calculated to describe the intrablock deformation and kinematic relationship between Ordos block and its margins. SKS observations are used to study the kinematic relationship between crust and deeper mantle and their dynamic mechanisms, combined with the absolute plate motion(APM)and kinematic vorticity parameters. Our results show that the Ordos block behaves rigidly and rotates anticlockwise relative to the stable Eurasia plate(Euler pole: (50.942±1.935)°N, (115.692±0.303)°E, (0.195±0.006)°/Ma). The block interior sees a weak deformation of~5 nano/a and a velocity difference of smaller than 2mm/a, which can be totally covered by the uncertainties of GPS data. Therefore, the Ordos block is moving as a whole without clear differential movement under the effective range of resolution of the available GPS datasets. Its western and eastern margins are characterized by two strong right-lateral shearing belts, where 0.2°~0.4°/Ma of rotation is measured by the GPS baseline pairs. However, its northern and southern margins are weakly deformed with left-lateral shearing, where only 0.1°/Ma of rotation is measured. Kinematics in the northeastern Tibetan plateau and western margin of the Ordos block can be described with vertical coherence model with strong coupling between the crust and deeper mantle induced by the strong extrusion of the Tibetan plateau. The consistency between SKS fast wave direction and absolute plate motion suggests the existence of mantle flow along the Qinling orogenic belt, which may extend to the interior of the Ordos block. SKS fast wave directions are consistent with the direction of the asthenosphere flow in Shanxi Rift and Taihang Mountains, indicating that the crustal deformation of these areas is controlled by subduction of the Pacific plate to North China. The week anisotropy on SKS in the interior of Ordos block is from fossil anisotropy in the craton interior. After comparing with the absolute plate motion direction and deformation model, we deem that anisotropy in the interior of Ordos block comes from anisotropy of fossils frozen in the lithosphere. In conclusion, the Ordos block is rotating anticlockwise relative to its margins, which may comes from positive movement of its margins driven by lithospheric extrusion or mantle flow beneath, and its self-rotation is slight. This study can provide useful information for discussion of kinematics between the Ordos block and its surrounding tectonic units.  相似文献   
883.
The "Falang Formation" of western Guizhou was previously called the "Halobia Bed" and considered to be I .adinian in age. It was subdivided upward into the Zhuganpo, Laishike and Longchang members based on ammonites and the Trachyceras multitubertulatum Zone of the Longchang Member was put in the Lower Carnian. Here in the present paper, 4 genera and 9 species of ammonites and 1 nautiloid genus and species collected from the upper part of the "Falang Formation" (i.e. the Wayao Formation used in this paper, equivalent to the Laishike Member from Guanling and Zhenfeng counties are described. The geological and geographical distribution of these cephalopods, as well as the co-existing conodonts, put the Wayao Formation to the late early Carnmian.  相似文献   
884.
柴达木盆地北缘鱼卡河岩群的地质特征和时代   总被引:5,自引:3,他引:5  
柴达木盆地北缘的鱼卡河岩群是在最近几年区域地质调查和研究的基础上新建立的构造岩石单位,主要分布于绿梁山—锡铁山—沙柳河—带,由石榴白云石英片岩、石榴(蓝晶)白云片岩、二云片岩、黑云变粒岩、黑云角闪片岩、榴辉岩、石榴斜长角闪岩及大理岩等组成,以含馏辉岩为特征。在绿梁山地区,鱼卡河岩群呈不同规模的残块产于花岗闪长质—二长花岗质片麻岩之中。野外观察和变质作用特点显示,至少有一部分榴辉岩的原岩是鱼卡河岩群表壳岩的组成部分,在早占生代遭受了高压变质再造。根据从鱼卡河岩群及花岗片麻岩中获得的同位素年龄,结合两者的野外地质关系,初步确定鱼卡河岩群形成于中元古代。  相似文献   
885.
一种用于机器视觉检测的图像配准快速算法   总被引:2,自引:0,他引:2  
图像配准是机器视觉检测的关键步骤之一。针对产品包装印刷质量检测,文中提出了一种新的图像配准算法。其基本思想是:首先进行图像概略匹配得到特征点的概略位置,接着进行特征点的精确检测,根据检测到的对应特征点坐标计算转换参数,最后生成配准图像。实验表明,该算法计算速度快,具有较好的精度和稳定性,适用于在线机器视觉检测等对速度要求高,而图像只有小角度旋转的情况。  相似文献   
886.
利用从油藏中分离的芽孢杆菌HBS4在兼性厌氧情况下作用于剧毒物质亚硒酸钠,36 h后1~11mM的样品中均出现了大量红色颗粒沉淀物.生物显微镜观察发现,在很多细菌内部出现一颗到多颗红色的圆形颗粒,排列方式有单链、双链、弧线和无规则排列,并且在细胞周围释放有游离态的红色颗粒.XPS测试红色沉淀物发现四价硒全部还原为零价硒.实验还发现添加葡萄糖对单质硒的产量有很大的促进作用.  相似文献   
887.
阿司匹林的合成条件研究   总被引:7,自引:0,他引:7  
以水杨酸和醋酐为原料经O-酰化反应合成阿司匹林,比较了三氯化铝、三氯化铋和无水碳酸钠三种不同催化剂以及反应条件对合成的影响,找到了最佳催化剂和最佳反应务件,即以三氯化铝为催化剂,其用量为水杨酸的2%,水杨酸与醋酐的摩尔比为1:2,反应时间为30min,回流温度为85℃左右,阿司匹林产率可迭72.6%。实验表明该催化剂催化效果好.不污染环境,是一种环境友好的催化剂。同时,本法简单、快速、经济、无污染,产品质量好,适于工业化生产。  相似文献   
888.
在GIS支持下,利用卫星遥感影像提供的信息和非遥感信息想结合的方法,获得研究区农田景观空间分布格局和生态环境现状数据资料。从区域农田生态系统特点和地区土地生态安全角度出发,通过对市域农田景观空间格局特征及其对土地生态环境安全影响的分析,显示出农田景观格局的空间差异性与破碎度高是农牧交错地区土地生态环境安全的重要影响因素。调整土地利用结构、加强地区土地整理与生态农业建设投入,是保证区域土地生态环境安全,促进区域社会经济可持续发展的主要途径。  相似文献   
889.
兴地断裂构造特征及其演化历史   总被引:4,自引:1,他引:4  
孙晓猛  王璞珺  刘鹏举  郝福江 《新疆地质》2006,24(4):348-352,I0008
兴地断裂是塔里木盆地东北缘十分重要的大型控盆断裂,该断裂对塔里木盆地东北缘地层发育、构造古地理、库鲁克塔格断隆-满加尔坳陷的构造演化等具有重要的控制作用.根据断裂带中糜棱岩、构造角砾岩、构造透镜体、断层崖、断层三角面等不同构造形迹的性质,结合断裂对区域地层发育和构造古地理的控制作用,对断裂的变形期次和性质进行了划分,并讨论了断裂的演化历史及其形成的地球动力学背景.断裂经历了元古代—新生代漫长的构造演化历史,发生了多期次不同性质构造活动.其构造演化主要包括形成期(Pt2);伸展期(Pt3—O);挤压反转期(O2末期和O3末期);左旋压扭期(Pz2末期)、逆冲推覆期(E末期—Q3)和右旋张扭期(Q4)6个构造演化阶段.  相似文献   
890.
奇异值分解是一种基于代数特征值的提取方法,小波变换是一种时间频率域的去噪方法,两者在去噪方面各有特点。将奇异值分解和小波阈值去噪的方法有机地结合起来,用于消除地震勘探资料中的随机噪声。仿真实验显示对于较低信噪比资料仍有很好的处理效果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号