首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   4篇
大气科学   5篇
地球物理   5篇
地质学   42篇
海洋学   3篇
天文学   21篇
自然地理   2篇
  2021年   1篇
  2015年   3篇
  2014年   1篇
  2013年   9篇
  2012年   5篇
  2011年   3篇
  2010年   11篇
  2009年   1篇
  2008年   5篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   7篇
  1996年   5篇
  1993年   1篇
  1990年   1篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1981年   4篇
  1980年   2篇
  1978年   1篇
  1976年   2篇
  1973年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
11.
12.
Abstract— Alteration of surficial suevites at Ries crater, Germany was studied by means of X‐ray diffraction and scanning electron microscopy. Here, we discuss the origin of hydrous silicate (clay) phases in these suevites that have been previously interpreted as resulting from post‐impact hydrothermal processes. The results of this study indicate that the dominant alteration phases are dioctahedral Al‐Fe montmorillonite and halloysite, which are typical low temperature clay minerals. We suggest that the surficial suevites are not altered by hydrothermal processes and that alteration occurred by low temperature subsurface weathering processes. If the surficial suevites were indeed hydrothermally modified during the early stages of post‐impact cooling, then the alteration was of limited character and is completely masked by later weathering.  相似文献   
13.
Books reviewed in this article:
Richard. Pierre J. H. 1481: Paléophytogéographieposlglaciaire en Ungava par l'analyse polliniquc. Puléo-Québec 13.  相似文献   
14.
Engels, S., Helmens, K. F., Väliranta, M., Brooks, S. J. & Birks, H. J. B. 2010: Early Weichselian (MIS 5d and 5c) temperatures and environmental changes in northern Fennoscandia as recorded by chironomids and macroremains at Sokli, northeast Finland. Boreas, Vol. 39, pp. 689–704. 10.1111/j.1502‐3885.2010.00163.x. ISSN 0300‐9483. A 25‐m‐long sediment record spanning the time from the Eemian to the Holocene was recovered from Sokli, northeast Finland. This study focuses on a 6‐m‐long sediment interval that is dated to the Early Weichselian period (MIS 5d and 5c) and consists of lacustrine and fluvial deposits. Using chironomid remains, botanical and zoological macroremains as well as sediment lithology, we were able to reconstruct past changes in the environment, including climate. The results indicate that the site was situated on a flood‐plain during the latter stages of MIS 5d (Herning Stadial) and that summer temperatures might have been ~6 °C lower than at present. Although this value should be treated with caution, as numerical analysis shows that it has a very poor fit‐to‐temperature, this low reconstructed value concurs with several other reconstructions that are available from western Europe. During MIS 5c (Brørup interstadial), the depositional environment changed into a lake system, initially with stratification of the water and subsequently with complete mixing and a strong influence of streams. Both chironomid‐based and macroremain‐based temperature inferences indicate past July air temperatures that were significantly higher than at present. This result is in contrast to other (low‐resolution) reconstructions from northern Fennoscandia that indicate past temperatures 6–7 °C lower than present using fossil coleopteran assemblages. However, several central European sites indicate that there was a phase during the Brørup interstadial that was characterized by high summer temperatures, and a comparison between the high‐resolution reconstructions from western Europe and the results presented in this study suggests that the north–south July air temperature gradient between the mid‐ and high‐latitudes was much weaker during the Brørup interstadial than it is at present. High solar insolation values (particularly the obliquity) during the Brørup interstadial might explain the low summer temperature gradient over the European continent. A return to fluvial conditions occurred in the upper parts of the sediment sequence, and, after a brief interval of gyttja deposition under cooling conditions, the site became glaciated during MIS 5b.  相似文献   
15.
16.
Abstract— Isheyevo is a metal‐rich carbonaceous chondrite that contains several lithologies with different abundances of Fe,Ni metal (7–90 vol%). The metal‐rich lithologies with 50–60 vol% of Fe,Ni metal are dominant. The metal‐rich and metal‐poor lithologies are most similar to the CBb and CH carbonaceous chondrites, respectively, providing a potential link between these chondrite groups. All lithologies experienced shock metamorphism of shock stage S4. All consist of similar components—Fe,Ni metal, chondrules, refractory inclusions (Ca, Al‐rich inclusions [CAIs] and amoeboid olivine aggregates [AOAs]), and heavily hydrated lithic clasts—but show differences in their modal abundances, chondrule sizes, and proportions of porphyritic versus non‐porphyritic chondrules. Bulk chemical and oxygen isotopic compositions are in the range of CH and CB chondrites. Bulk nitrogen isotopic composition is highly enriched in 15N (δ15N = 1122‰). The magnetic fraction is very similar to the bulk sample in terms of both nitrogen release pattern and isotopic profile; the non‐magnetic fraction contains significantly less heavy N. Carbon released at high temperatures shows a relatively heavy isotope signature. Similarly to CBb chondrites, ~20% of Fe,Ni‐metal grains in Isheyevo are chemically zoned. Similarly to CH chondrites, some metal grains are Ni‐rich (>20 wt% Ni). In contrast to CBb and CH chondrites, most metal grains are thermally decomposed into Ni‐rich and Ni‐poor phases. Similar to CH chondrites, chondrules have porphyritic and non‐porphyritic textures and ferromagnesian (type I and II), silica‐rich, and aluminum‐rich bulk compositions. Some of the layered ferromagnesian chondrules are surrounded by ferrous olivine or phyllosilicate rims. Phyllosilicates in chondrule rims are compositionally distinct from those in the hydrated lithic clasts. Similarly to CH chondrites, CAIs are dominated by the hibonite‐, grossite‐, and melilite‐rich types; AOAs are very rare. We infer that Isheyevo is a complex mixture of materials formed by different processes and under different physico‐chemical conditions. Chondrules and refractory inclusions of two populations, metal grains, and heavily hydrated clasts accreted together into the Isheyevo parent asteroid in a region of the protoplanetary disk depleted in fine‐grained dust. Such a scenario is consistent with the presence of solar wind—implanted noble gases in Isheyevo and with its comparatively old K‐Ar age. We cannot exclude that the K‐Ar system was affected by a later collisional event. The cosmic‐ray exposure (CRE) age of Isheyevo determined by cosmogenic 38Ar is ~34 Ma, similar to that of the Bencubbin (CBa) meteorite.  相似文献   
17.
18.
Heikkilä, M. & Seppä, H. 2010: Holocene climate dynamics in Latvia, eastern Baltic region: a pollen‐based summer temperature reconstruction and regional comparison. Boreas, Vol. 39, pp. 705–719. 10.1111/j.1502‐3885.2010.00164.x. ISSN 0300‐9483. A pollen‐based summer temperature (Tsummer) reconstruction reveals the Holocene climate history in southeastern Latvia and contributes to the limited understanding of past climate behaviour in the eastern sector of northern Europe. Notably, steady climate warming of the early Holocene was interrupted c. 8350–8150 cal. yr BP by the well‐known 8.2 ka cold event, recorded as a decrease of 0.9 to 1.8 °C in Tsummer. During the Holocene Thermal Maximum, c. 8000–4000 cal. yr BP, the reconstructed summer temperature was ~2.5–3.5 °C higher than the modern reconstructed value, and subsequently declined towards present‐day values. Comparison of the current reconstruction with other pollen‐based reconstructions in northern Europe shows that the 8.2 ka event is particularly clearly reflected in the Baltic region, possibly as a result of distinct climatic and ecological gradients and the sensitivity of the vegetation growth pattern to seasonal temperature change. The new reconstruction also reveals that the Holocene Thermal Maximum was warmer in Latvia than in central Europe and Fennoscandia. In fact, a gradient of increasing positive temperature anomalies is detected from northernmost Fennoscandia towards the south and from the Atlantic coast in Norway towards the continental East European Plain. The dynamics of the temperate broadleaved tree species Tilia and Quercus in Latvia and adjacent northern Europe during the mid‐Holocene give complementary information on the multifaceted climatic and environmental changes in the region.  相似文献   
19.
As a result of global changes, shifts of alpine tree lines towards higher elevations have been recorded, but the role of the spatial variability of the snowpack and zonal‐pattern soil‐nutrient regimes is poorly understood. Norway spruce (Picea abies (L.) Karst) is best suited to fertile soils, and hence we applied soil physical‐chemical and snow measurements and the age chronology of Norway spruce along an elevational gradient (380–557 m a.s.l.) to address a vertical soil zonality hypothesis on mafic Lommoltunturi fell in Finnish Lapland. With regard to increasing elevation, we found an increase in soil NTOT, CTOT and Al, but a decrease in soil Ca, Mg and Ca:Al ratio as well as in electrical conductivity (EC). In addition, the snowpack was significantly thicker in low‐elevation forest than in the tree line and open tundra. In the 1840s, spruce established on low‐elevation soils with a Ca:Al ratio of 2.2. Starting from the 1920s a significant shift of spruce occurred such that it took 60 years to expand the tree line by 55 m in elevation. The spruce tree line has advanced, and the age distribution indicates new colonization of spruce in closed forest up to tundra. The poor soil Ca:Al ratio of 0.02 on tundra apparently is a constraint for spruce. Spruce forest is young (<165 years), and hence we argue that spruce has expanded onto formerly tree‐free sites of this mafic fell. This paper demonstrates that vertical soil zonality is a potential driver for the diffuse tree line of Picea abies on mafic Fennoscandian fells.  相似文献   
20.
Lithocodium aggregatum and Bacinella irregularis are now extinct, shallow marine life forms of unknown taxonomic origin. Forming part of the tropical platform biota during much of the Mesozoic, these organisms experienced bloom periods and temporarily replaced rudist–coral assemblages during parts of the Early Aptian. Within the limitations of time resolution, this ‘out‐of‐balance’ facies is coeval with the Oceanic Anoxic Event 1a‐related black shale deposition in oceanic basins but the triggering factors remain poorly understood. Here, a platform‐wide comparison of Lithocodium–Bacinella geobodies and morphotypes from the Sultanate of Oman is presented and placed in its environmental, bathymetric and physiographic context. Lithocodium–Bacinella geobodies reach from kilometre‐scale ‘superstructures’ to delicate centimetre‐sized growth forms. Clearly, scale matters and care must be taken when drawing conclusions based on spatially limited observational data. Whilst the factors that cause Lithocodium–Bacinella expansion should probably be considered in a global context, regional to local factors affected growth patterns in a more predictable manner. Here, the unresolved taxonomic relationship remains the main obstacle in any attempt to unravel the response of Lithocodium–Bacinella to specific or interlinked environmental parameters as different organisms respond differently to changing environment. Acknowledging these limitations, the following tentative patterns are observed: (i) Lithocodium–Bacinella tolerated a wide range of hydrodynamic levels and responded to differences in energy level or physiographic settings (margin, intrashelf basin, inner platform) by obtaining characteristic growth forms. (ii) Lithocodium–Bacinella favoured low‐sediment input but had the ability to react to higher sedimentation rates by enhanced upward growth; a feature perhaps pointing to a phototrophic metabolism. Circumstantial evidence for continuous growth within the upper‐sediment column is debated. (iii) The availability of accommodation space had a direct influence on the maximum size of geobodies formed. (iv) Fluctuating nutrient levels and sea water alkalinity may have affected the growth potential of Lithocodium–Bacinella. Understanding the relationship between Lithocodium–Bacinella morphogenesis on a wide range of scales and local environmental parameters allows for better prediction of the spatial distribution of reservoir properties and also results in an improved interpretation of palaeoenvironments. This study might represent a useful first step in this direction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号