首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31656篇
  免费   603篇
  国内免费   384篇
测绘学   816篇
大气科学   2886篇
地球物理   6600篇
地质学   10964篇
海洋学   2460篇
天文学   6906篇
综合类   70篇
自然地理   1941篇
  2020年   188篇
  2019年   206篇
  2018年   503篇
  2017年   494篇
  2016年   711篇
  2015年   464篇
  2014年   692篇
  2013年   1441篇
  2012年   761篇
  2011年   1063篇
  2010年   906篇
  2009年   1288篇
  2008年   1091篇
  2007年   973篇
  2006年   1086篇
  2005年   915篇
  2004年   893篇
  2003年   908篇
  2002年   894篇
  2001年   775篇
  2000年   807篇
  1999年   674篇
  1998年   650篇
  1997年   684篇
  1996年   587篇
  1995年   553篇
  1994年   500篇
  1993年   437篇
  1992年   440篇
  1991年   424篇
  1990年   435篇
  1989年   406篇
  1988年   385篇
  1987年   476篇
  1986年   444篇
  1985年   478篇
  1984年   565篇
  1983年   575篇
  1982年   514篇
  1981年   500篇
  1980年   457篇
  1979年   439篇
  1978年   454篇
  1977年   403篇
  1976年   357篇
  1975年   360篇
  1974年   408篇
  1973年   394篇
  1972年   247篇
  1971年   225篇
排序方式: 共有10000条查询结果,搜索用时 703 毫秒
851.
We propose a model for the generation of average MORBs based on phase relations in the CaO-MgO-Al2O3-SiO2-CO2 system at pressures from 3 to 7 GPa and in the CaO-MgO-Al2O3-SiO2-Na2O-FeO (CMASNF) system at pressures from ∼0.9 to 1.5 GPa. The MELT seismic tomography (Forsyth et al., 2000) across the East Pacific Rise shows the largest amount of melt centered at ∼30-km depth and lesser amounts at greater depths. An average mantle adiabat with a model-system potential temperature (Tp) of 1310°C is used that is consistent with this result. In the mantle, additional minor components would lower solidus temperatures ∼50°C, which would lower Tp of the adiabat for average MORBs to ∼1260°C. The model involves generation of carbonatitic melts and melts that are transitional between carbonatite and kimberlite at very small melt fractions (<0.2%) in the low-velocity zone at pressures of ∼2.6 to 7 GPa in the CMAS-CO2 system, roughly the pressure range of the PREM low-velocity zone. These small-volume, low-viscosity melts are mixed with much larger volumes of basaltic melt generated at the plagioclase-spinel lherzolite transition in the pressure range of ∼0.9 to 1.5 GPa.In this model, solidus phase relations in the pressure range of the plagioclase-spinel lherzolite transition strongly, but not totally, control the major-element characteristics of MORBs. Although the plagioclase-spinel lherzolite transition suppresses isentropic decompression melting in the CMAS system, this effect does not occur in the topologically different and petrologically more realistic CMASNF system. On the basis of the absence of plagioclase from most abyssal peridotites, which are the presumed residues of MORB generation, we calculate melt productivity during polybaric fractional melting in the plagioclase-spinel lherzolite transition interval at exhaustion of plagioclase in the residue. In the CMASN system, these calculations indicate that the total melt productivity is ∼24%, which is adequate to produce the oceanic crust. The residual mineral proportions from this calculation closely match those of average abyssal peridotites.Melts generated in the plagioclase-spinel lherzolite transition are compositionally distinct from all MORB glasses, but do not have a significant fractional crystallization trend controlled by olivine alone. They reach the composition field of erupted MORBs mainly by crystallization of both plagioclase and olivine, with initial crystallization of either one of these phases rapidly joined by the other. This is consistent with phenocryst assemblages and experimental studies of the most primitive MORBs, which do not show an olivine-controlled fractionation trend. The model is most robust for the eastern Pacific, where an adiabat with a Tp of ∼1260°C is supported by the MELT seismic data and where the global inverse correlation of (FeO)8 with (Na2O)8 is weak. Average MORBs worldwide also are well modeled. A heterogeneous mantle consisting of peridotite of varying degrees of major-element depletion combined with phase-equilibrium controls in the plagioclase-spinel lherzolite transition interval would produce the form of the global correlations at a constant Tp, which suggests a modest range of Tp along ridges. Phase-composition data for the CMASNF system are presently not adequate for quantitative calculation of (FeO)8-(Na2O)8-(CaO/Al2O3)8 systematics in terms of this model. The near absence of basalts in the central portion of the Gakkel Ridge suggests a lower bound for Tp along ridges of ∼1240°C, a potential temperature just low enough to miss the solidus for basalt production at ∼0.9 GPa. An upper bound for Tp is poorly constrained, but the complete absence of picritic glasses in Iceland and the global ridge system suggests an upper bound of ∼1400°C. In contrast to some previous models for MORB generation that emphasize large potential temperature variations in a relatively homogeneous peridotitic mantle, our model emphasizes modest potential temperature variations in a peridotitic mantle that shows varying degrees of heterogeneity. Calculations indicate that melt productivity changes from 0 to 24% for a change in Tp from 1240 to 1260°C, effectively producing a rapid increase to full crustal thickness or decrease to none as ridges appear and disappear.  相似文献   
852.
853.
854.
855.
856.
Climate change impacts on U.S. Coastal and Marine Ecosystems   总被引:1,自引:0,他引:1  
Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction, invasive species, land and resource use, extreme natural events), which may lead to more significant consequences.  相似文献   
857.
Although a number of methods for calculating dynamic pseudo-functions have been developed over the years, there is still a lack of understanding as to why a certain method will succeed in some cases but fail in others. In this paper, we describe the results of an assessment of several upscaling methods, namely the Kyte and Berry (KB) method, the Stone method, the Hewett and Archer (HA) method and the Transmissibility-Weighted (TW) method. We have analyzed the equations for deriving the methods and investigated the results of numerical simulations of gas displacing oil, in a variety of models to enable us to gain new insights into these, and related, upscaling methods. In particular, some novel observations on methods based on fluid potential are presented and the issue of using predicted fluid mobilities as a criterion of accuracy of an upscaling method is clarified.  相似文献   
858.
Assessments of inorganic elemental speciation in seawater span the past four decades. Experimentation, compilation and critical review of equilibrium data over the past forty years have, in particular, considerably improved our understanding of cation hydrolysis and the complexation of cations by carbonate ions in solution. Through experimental investigations and critical evaluation it is now known that more than forty elements have seawater speciation schemes that are strongly influenced by pH. In the present work, the speciation of the elements in seawater is summarized in a manner that highlights the significance of pH variations. For elements that have pH-dependent species concentration ratios, this work summarizes equilibrium data (S = 35, t = 25°C) that can be used to assess regions of dominance and relative species concentrations. Concentration ratios of complex species are expressed in the form log[A]/[B] = pH - C where brackets denote species concentrations in solution, A and B are species important at higher (A) and lower (B) solution pH, and C is a constant dependent on salinity, temperature and pressure. In the case of equilibria involving complex oxy-anions (MO x (OH) y ) or hydroxy complexes (M(OH) n ), C is written as pK n = -log K n or pK n * = -log K n * respectively, where K n and K n * are equilibrium constants. For equilibria involving carbonate complexation, the constant C is written as pQ = -log(K 2 l K n [HCO3 -]) where K 2 l is the HCO3 - dissociation constant, K n is a cation complexation constant and [HCO3 -] is approximated as 1.9 × 10-3 molar. Equilibrium data expressed in this manner clearly show dominant species transitions, ranges of dominance, and relative concentrations at any pH.  相似文献   
859.
The coastal marshlands of the Nueces estuary, Texas depend upon periodic freshwater inundation to support current community structure and promote further establishment and expansion of emergent halophytes. Decades of watershed modifications have dramatically decreased freshwater discharge into the upper estuary resulting in hypersaline and dry conditions. In an attempt to partially restore inflow, the U.S. Bureau of Reclamation excavated two overflow channels re-connecting the Nueces River to the marshlands. Freshwater-mediated (precipitation and inflow) changes in tidal creek and porewater salinity and emergent marsh vegetation were examined over a 5-yr period at three stations in the upper Nueces Marsh with the aid of a Geographical Information System (GIS). Two stations were potentially subjected to freshwater inflow through the channels, while one station experienced only precipitation. Decreased tidal creek and porewater salinity were significantly correlated with increased freshwater at all stations (R2=0.37 to 0.56), although porewater salinities remained hypersaline. GIS analyses indicated the most considerable vegetation change following freshwater inundation was increased cover of the annual succulentSalicornia bigelovii. Fall inundation allowed seed germination and rapid expansion of this species into previously bare areas during the subsequent winter and following spring. The station affected by both inflow and precipitation exhibited greaterS. bigelovii cover than the station affected solely by precipitation in both spring 1999 (58. 7% compared to 27.9%) and 2000 (48.6% compared to 1.9%). Percent cover of the perennialBatis maritima temporarily increased after periods of consistent rainfall. The response was short term, and cover quickly returned to pre-inundation conditions within 3 mo. Prolonged inundation led to longterm (>2yr) decreases in percent cover ofB. maritima. Our results suggest that the timing and quantity of freshwater inundation strongly dictate halophyte response to precipitation and inflow. Brief periods of freshwater inundation that occur at specific times of year alleviate stress and promote seed germination and growth, but extended soil saturation can act as a disturbance that has a negative impact on species adapted to hypersaline conditions.  相似文献   
860.
在合理构建华南印支期地质-物理模型的基础上, 利用FLAC软件, 模拟了该区印支期过铝质富钾花岗岩形成与基性岩浆底侵, 及陆壳变形叠置加厚两种动力学背景的可能联系. 模拟结果表明, 220 Ma±的基性岩浆底侵能导致地壳含水矿物相岩石的深熔, 但除非印支期存在大规模基性岩浆的底侵作用, 否则其热效应持续时间和热效应波及范围难以形成具大岩基规模的湖南印支期花岗岩. 在陆壳叠置加厚模型中, 地壳的叠置加厚可导致中下地壳界面温度升高到700℃以上, 引起片麻质岩石熔融, 当加厚因子达1.3, 白云母矿物脱水熔融产生的熔体达到熔体流动临界比例(≥20%), 从而形成花岗岩基; 结合印支期挤压逆冲推覆构造和同期基性火山岩极少出露的地质事实, 认为陆壳变形加厚可能是湖南印支期构造岩浆作用形成的主导因素.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号