首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   1篇
  国内免费   3篇
测绘学   4篇
大气科学   10篇
地球物理   34篇
地质学   54篇
海洋学   18篇
天文学   54篇
综合类   1篇
自然地理   11篇
  2024年   2篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   8篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   3篇
  2012年   12篇
  2011年   10篇
  2010年   14篇
  2009年   20篇
  2008年   8篇
  2007年   11篇
  2006年   11篇
  2005年   6篇
  2004年   7篇
  2003年   6篇
  2002年   10篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1988年   3篇
  1987年   2篇
  1985年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有186条查询结果,搜索用时 15 毫秒
51.
We present high signal-to-noise ratio spectrophotometric observations of seven luminous H  ii galaxies. The observations have been made with the use of a double-arm spectrograph which provides spectra with a wide wavelength coverage, from 3400 to 10 400 Å free of second-order effects, of exactly the same region as that of a given galaxy. These observations are analysed applying a methodology designed to obtain accurate elemental abundances of oxygen, sulphur, nitrogen, neon, argon and iron in the ionized gas. Four electron temperatures and one electron density are derived from the observed forbidden line ratios using the five-level atom approximation. For our best objects, errors of 1 per cent in t e([O  iii ]), 3 per cent in t e([O  ii ]) and 5 per cent in t e([S  iii ]) are achieved with a resulting accuracy of 7 per cent in total oxygen abundances, O/H.
The ionization structure of the nebulae can be mapped by the theoretical oxygen and sulphur ionic ratios, on the one side, and the corresponding observed emission line ratios, on the other – the η and η' plots. The combination of both is shown to provide a means to test photoionization model sequences presently applied to derive elemental abundances in H  ii galaxies.  相似文献   
52.
We present the first high-spatial-resolution near-infrared (NIR) imaging of NGC604, obtained with the NICMOS camera onboard the Hubble Space Telescope (HST). These NICMOS broad-band images reveal new NIR point sources, clusters, and diffuse structures. We find an excellent spatial correlation between the 8.4 GHz radio continuum and the 2.2 μm nebular emission. Moreover, massive young stellar object candidates appear aligned with these radio peaks, reinforcing the idea that those areas are star-forming regions. Three different scaled OB associations are recognized in the NICMOS images. The brightest NIR sources in our images have properties that suggest that they are red supergiant stars, of which one was previously known. This preliminary analysis of the NICMOS images shows the complexity of the stellar content of the NGC604 nebula.  相似文献   
53.
The Santi Petri dome (western Betics, southern Spain) shows a core-complex-like structure, where migmatitic gneisses and schists outcrop below low-grade slates and phyllites, all of which form the basement of the Neogene Málaga basin. The migmatites and schists suffered a coaxial-flattening event during isothermal decompression and were later exhumed by ductile ESE non-coaxial stretching. Further exhumation was achieved by W- to SW-transport brittle low-angle normal faulting. Subsequently these extensional structures were gently folded in the core of a NE/SW-oriented antiform during the Tortonian. Finally the Santi Petri domal geometry was accentuated by the interference of orthogonal high-angle faults with ENE–WSW and NNW–SSE orientation. This core-complex-like structure, formed by superposition of extensional and compressive tectonic events, does not represent a classical, purely extensional core complex, which shows that metamorphic structure and geometry are not decisive criteria to define a core-complex.  相似文献   
54.
Climatic, oceanographic and ecological changes that control the formation and deposition of sediment in shallow and deep depositional environments commonly occur with periodicities of a few 10 000 years. Consequently, in order to interpret sedimentary sequences in the geological past, high time resolution is required. This is best obtained by cyclostratigraphy. Three sections have been studied in the Oxfordian of north-eastern Spain: one represents a shallow, siliciclastic-carbonate platform with repetitive subaerial exposures, one an intraplatform basin with sponge bioherms, and one a swell where iron ooids and glauconite formed. The platform section displays a well-defined stacking pattern of depositional sequences; the deeper-water sections are well dated by ammonites. The correlation between the three sections is a best-fit solution integrating biostratigraphy, sequence stratigraphy and cyclostratigraphy. It is concluded that the small-scale depositional sequences formed in tune with the 100-ka orbital eccentricity cycle. An additional factor was differential subsidence that ruled basin morphology.  相似文献   
55.
Many water quality models use some form of the curve number (CN) equation developed by the Soil Conservation Service (SCS; U.S. Depart of Agriculture) to predict storm runoff from watersheds based on an infiltration-excess response to rainfall. However, in humid, well-vegetated areas with shallow soils, such as in the northeastern USA, the predominant runoff generating mechanism is saturation-excess on variable source areas (VSAs). We reconceptualized the SCS–CN equation for VSAs, and incorporated it into the General Watershed Loading Function (GWLF) model. The new version of GWLF, named the Variable Source Loading Function (VSLF) model, simulates the watershed runoff response to rainfall using the standard SCS–CN equation, but spatially distributes the runoff response according to a soil wetness index. We spatially validated VSLF runoff predictions and compared VSLF to GWLF for a subwatershed of the New York City Water Supply System. The spatial distribution of runoff from VSLF is more physically realistic than the estimates from GWLF. This has important consequences for water quality modeling, and for the use of models to evaluate and guide watershed management, because correctly predicting the coincidence of runoff generation and pollutant sources is critical to simulating non-point source (NPS) pollution transported by runoff. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
56.
A numerical solution of the dam failure problem as described by the one-dimensional shallow water equations is presented. The construction of the solution is based on the random choice method consisting in the superposition of locally theoretical solutions and sampling techniques. The search of the optimal sampling is performed through the application of the random choice method to the scalar wave equation. The dam failure problem is then solved and a comparison with the theoretical solution is presented. It is shown that the random choice method computes the bore with almost infinite resolution, represents exactly the constant state behind it and calculates the depression wave with great accuracy.  相似文献   
57.
This paper describes an innovative method to characterise conduction parameters in geomaterials at the particle-scale. The technique is exemplified using 3D synthetic grain packing generated with discrete element approaches. This creates a geo-mechanically viable user-defined 3D granular image through which the particle skeleton and the corresponding pore network are constructed. Images are then imported into the finite element analyses to solve the governing equations of hydraulic and thermal conduction. Navier–Stokes equation is uniquely upscaled to Darcy’s law to assess hydraulic conductivity in soils, while a similar approach implements the Fourier equation to evaluate thermal conduction through grain chains and pore network. High performance computing is used to meet demanding numerical calculations of 3D meshed geometries. Packing density (i.e., porosity) and inter-particle contact areas are explored as variables to highlight the effects of pore volume and inter-particle contact condition in hydraulic and thermal conduction. This emerging technique allows not only characterising the macro-scale behaviour of conduction phenomena in soils but also quantifying and visualising the preferential and local conduction behaviour at the particle-scale. Laboratory measurements of hydraulic and thermal conductivities support numerically obtained results and validate the viability of the new methods used herein. This study introduces an alternative way to determine physical parameters of soils using emerging technology of rigorous numerical simulations in conjunction with 3D images, and to enable fundamental observation of particle-scale mechanisms of macro-scale manifestation.  相似文献   
58.
Low-level climatological wind fields over the La Plata River region of South America are synthesized with a dry, hydrostatic mesoscale boundary-layer numerical model. The model is forced at the upper boundary with the 1200 UTC local radiosonde observations and at the lower boundary with a land-river differential heating function defined from the daily meteorological observations of the region. The climatological wind field is defined as the mean value of a series of individual daily forecasts, employing two methods. The simplified method considers a 192-member ensemble (16 wind directions and 12 wind-speed classes at the upper boundary). Each member has a probability of occurrence that is determined from the 1959–1984 observations; the daily method uses a total of 3,248 days with available data during the same period. In both methods each realization is a daily forecast from which the mean wind distributions at 0300, 0900, 1500 and 2100 local standard time are calculated and compared to the observations of five meteorological stations in the region. The validation of the climatological wind fields for both methods is evaluated by means of the root-mean-square error of the wind-direction frequency distribution and mean wind speed by wind sector. The results obtained with the two methods are similar, and the errors in wind speed are always smaller than those in wind direction. The combined errors of wind direction and wind speed show that the ensemble method is outperformed by the daily method, on average by meteorological station in only one out of five of them, and on average by the time of the day in only one out of 4 h. The conclusion of the study is that the ensemble method is an appropriate methodology for determining high resolution, low-level climatological wind fields, with the boundary-layer model applied to a region with a strong diurnal cycle of surface thermal contrast. The proposed methodology is of particular utility for synthesizing wind fields over regions with limited meteorological observations, since the 192-member matrix can be easily defined with few observing points, as well as in the case of relatively incomplete records.  相似文献   
59.
Quantifying the energy balance above plant canopies is critical for better understanding of water balance and changes in regional weather patterns. This study examined temporal variations of energy balance terms for contrasting canopies [corn (Zea mays L.) and soybean (Glycine max L. Merr.)]. We monitored energy balance for 4 years using eddy-covariance systems, net radiometers, and soil heat flux plates in adjacent production fields near Ames, Iowa. On an annual basis, soybean exhibited 20% and 30% lower sensible heat flux (H) and Bowen ratio than corn, respectively. As canopies developed, a gradual shift in turbulent fluxes occurred with decreasing H and increasing latent heat flux (LE), but with a more pronounced effect for corn. Conversely, during mid-growing season and as both canopies progressively senesced, H in general increased and LE decreased; however, soybean exhibited slightly greater LE and much lower H than corn. These temporal variations in magnitude and partitioning of turbulent fluxes translated into a pronounced energy imbalance for soybean (0.80) and an enhanced closure for corn (0.98) in August and September. These discrepancies could be directly associated with differences in momentum transport as shown by friction velocities of 0.34 and 0.28 m s?1 for corn and soybean, respectively. These results support influential roles of plant canopy on intensity and mode of surface energy exchange processes.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号