首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   1篇
  国内免费   3篇
测绘学   4篇
大气科学   10篇
地球物理   34篇
地质学   54篇
海洋学   18篇
天文学   54篇
综合类   1篇
自然地理   11篇
  2024年   2篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   8篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   3篇
  2012年   12篇
  2011年   10篇
  2010年   14篇
  2009年   20篇
  2008年   8篇
  2007年   11篇
  2006年   11篇
  2005年   6篇
  2004年   7篇
  2003年   6篇
  2002年   10篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1988年   3篇
  1987年   2篇
  1985年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有186条查询结果,搜索用时 0 毫秒
181.
182.
183.
Neogene strain from the subducting Nazca plate is widely distributed in theAndean foreland as a result of flat-lying subduction beneath central westernArgentina (28°–33°S latitude). This fact is indicated byuplifted basement blocks bounded by reverse faults as far as 600 kms eastof the Chilean trench axis. Some deformation in the southern Sierras deCórdoba (southeastern Sierras Pampeanas) indicates significantdisplacements during Quaternary and even late Holocene time. Thisregion has low to moderate seismicity characterized by earthquakemagnitudes 6.7 with no associated noticeable surface ruptures.This paper presents information recently gathered on the most conspicuousregional structures of the area (El Molino, Sierra Chica and Las Lagunasfaults). The last movement along the El Molino fault thrust basement rocksover organic-rich (0.8–1.3 ka) sediment and fault relationships suggestprevious Quaternary displacements. Along the Sierra Chica fault,Precambrian basement has been thrust a minimum of 13.5 m overPleistocene conglomerates, and faulting also affects latePleistocene-Holocene fluvial sediments. The Las Lagunas fault has beenregarded as the source of the 1934 Ms 5.5 and 6.0 earthquakes, whichheavily damaged the nearby village of Sampacho. The faulted surface isburied under Holocene loess, but its trace is expressed as a 24-km-longrectilinear scarp, despite continuous modification due to land use.Although we lack detailed information on probable rupture lengths duringlarge Sierras Pampeanas thrust earthquakes, some preliminary considerationsare made for the regional seismic hazard of these structures. The geologicevidence described here identifies these faults as possible sources of strongearthquakes in the future.  相似文献   
184.
The onset of deformation in the northern Andes is overprinted by subsequent stages of basin deformation, complicating the examination of competing models illustrating potential location of earliest synorogenic basins and uplifts. To establish the width of the earliest northern Andean orogen, we carried out field mapping, palynological dating, sedimentary, stratigraphic and provenance analyses in Campanian to lower Eocene units exposed in the northern Eastern Cordillera of Colombia (Cocuy region) and compare the results with coeval succession in adjacent basins. The onset of deformation is recorded in earliest Maastrichtian time, as terrigenous detritus arrived into the basin marking the end of chemical precipitation and the onset of clastic deposition produced by the uplift of a western source area dominated by shaly Cretaceous rocks. Disconformable contacts within the upper Maastrichtian to middle Palaeocene succession document increasing supply of quartzose sandy detritus from Cretaceous quartzose rocks exposed in eastern source areas. The continued unroofing of both source areas produced a rapid shift in depositional environments from shallow marine in Maastrichtian to fluvial‐lacustrine systems during the Palaeocene‐early Eocene. Supply of immature Jurassic sandstones from nearby western uplifts, together with localized plutonic and volcanic Cretaceous rocks, caused a shift in Palaeocene sandstones composition from quartzarenites to litharenites. Supply of detrital sandy fragments, unstable heavy minerals and Cretaceous to Ordovician detrital zircons, were derived from nearby uplifted blocks and from SW fluvial systems within the synorogenic basin, instead of distal basement rocks. The presence of volcanic rock fragments and 51–59 Ma volcanic zircons constrain magmatism within the basin. The Maastrichtian–Palaeocene sequence studied here documents crustal deformation that correlates with coeval deformation farther south in Ecuador and Peru. Slab flattening of the subducting Caribbean plate produced a wider orogen (>400 km) with a continental magmatic arc and intra‐basinal deformation and magmatism.  相似文献   
185.
We present the first occurrences of high-pressure, low-temperature ferro-magnesiocarpholite-bearing mineral assemblages associated to quartz segregations in the Alpujarride units of southeastern Betics (Sierra de Almagro, Sierra de los Pinos and Sierra Cabrera). Thermobarometric results show that the carpholite-bearing rocks underwent the same PT conditions in the three outcrops, i.e. 8–10 kbar, 350–400 °C. Metamorphic and structural data allow us to conclude that these rocks belong to the same Alpujarride unit. In the Sierra de Almagro, tectonic units with carpholite-bearing rocks overlie low-pressure, low-temperature Alpujarride units, then forming a stack with an inverted tectono-metamorphic sequence, as observed in the central and western part of the Alpujarride complex. The preservation of carpholite-bearing assemblages in these rocks implies that no significant temperature increase occurred during the exhumation history. To cite this article: G. Booth-Rea et al., C. R. Geoscience 334 (2002) 857–865.  相似文献   
186.
When the first Americans inhabited the area now known as Isla Espiritu Santo, around 12.5 and 6 ka, the sea level continuously rose. This resulted in the loss of the coastal territory and the retreat of the human population further inland. Part of the archaeological evidence of this period currently lies over the seafloor and under the seabed. Therefore, reconstructing paleoshorelines is a necessary first step toward submerged precontact archaeology and a broad understanding of the spatial context in which those human populations interacted and how the landscapes changed. Isla Espiritu Santo is of prehistoric importance as it contains numerous Paleocoastal tradition sites as early as ~12,400 Cal B.P. This research aims to reconstruct the changing shoreline positions as sea levels rose around Isla Espiritu Santo between 12.5 and 6.5 ka. We apply numerical modeling to map digital elevation models at 1 ka intervals by estimating the changes in the morphology of the seafloor according to the deposition rates and global sea-level curve. The results show the evolution of coastal morphology and paleoshoreline's position. Three primary geoforms are proposed: (1) coastal plains, (2) tombolo, and (3) a coastal lagoon–island barrier system. This also offers insights into the physical aspect of submerged prehistoric landscapes and the possible resource exploitation options of early societies. In this research, the reconstruction of submerged landscapes seeks to contribute to the long-term goal of locating submerged precontact sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号