首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   22篇
  国内免费   3篇
测绘学   11篇
大气科学   24篇
地球物理   98篇
地质学   137篇
海洋学   27篇
天文学   77篇
综合类   3篇
自然地理   53篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   11篇
  2018年   13篇
  2017年   2篇
  2016年   17篇
  2015年   12篇
  2014年   10篇
  2013年   19篇
  2012年   8篇
  2011年   25篇
  2010年   20篇
  2009年   23篇
  2008年   23篇
  2007年   15篇
  2006年   24篇
  2005年   10篇
  2004年   12篇
  2003年   18篇
  2002年   13篇
  2001年   11篇
  2000年   13篇
  1999年   8篇
  1998年   7篇
  1997年   4篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   8篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   9篇
  1979年   4篇
  1978年   6篇
  1977年   2篇
  1975年   4篇
  1974年   4篇
  1971年   2篇
  1968年   2篇
排序方式: 共有430条查询结果,搜索用时 15 毫秒
141.
During the last two decades, remote sensing data have led to tremendous progress in advancing flood inundation modelling. In particular, low‐cost space‐borne data can be invaluable for large‐scale flood studies in data‐scarce areas. Various satellite products yield valuable information such as land surface elevation, flood extent and water level, which could potentially contribute to various flood studies. An increasing number of research studies have been dedicated to exploring those low‐cost data towards building, calibration and evaluation, and remote‐sensed information assimilation into hydraulic models. This paper aims at reviewing these recent scientific efforts on the integration of low‐cost space‐borne remote sensing data with flood modelling. Potentials and limitations of those data in flood modelling are discussed. This paper also introduces the future satellite missions and anticipates their likely impacts in flood modelling. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
142.
The South Poroto–Rungwe geothermal field, in the northern part of the Malawi rift, Tanzania divides in two main areas. The relatively high altitude northern area around the main Ngozi, Rungwe, Tukuyu and Kyejo volcanoes, is characterised by cold and gas-rich springs. In contrast, hot springs occur in the southern and low-altitude area between the Kyela and Livingstone faults. The isotopic signature of the almost stagnant, cold springs of the Northern district is clearly influenced by H2O–CO2(g) exchange as evidenced from negative oxygen-shifts in the order of few deltas permil. In contrast, the isotopic signature of waters discharged from the hot springs of the Southern district is markedly less affected by the H2O–CO2(g) interaction. This evidence is interpreted as an effect of the large, permanent outflow of these springs, which supports the hypothesis of a regional-scale recharge of the major thermal springs. Measurements of carbon isotope variations of the dissolved inorganic carbon of waters and CO2(g) from the Northern and Southern springs support a model of CO2(g)-driven reactivity all over the investigated area. Our combined chemical and isotopic results show that the composition of hot springs is consistent with a mixing between (i) cold surface fresh (SFW) and (ii) Deep Hot Mineralised (DHMW) Water, indicating that the deep-originated fluids also supply most of the aqueous species dissolved in the surface waters used as local potable water. Based on geothermometric approaches, the temperature of the deep hydrothermal system has been estimated to be higher than 110 °C up to 185 °C, in agreement with the geological and thermal setting of the Malawi rift basin. Geochemical data point to (i) a major upflow zone of geothermal fluids mixed with shallow meteoric waters in the Southern part of the province, and (ii) gas absorption phenomena in the small, perched aquifers of the Northern volcanic highlands.  相似文献   
143.
The discrepancy between the size of the Apenninic chain and the depth of the Adriatic foredeep is investigated using 2D flexural backstripping on well‐constrained depth‐converted cross‐sections in the Pescara basin (Central Italy). The procedure consisted of removal, uplift, unfolding and unfaulting of the Pliocene–Pleistocene foreland deposits to produce a palaeogeographic map of the basin at the end of the Messinian and to constrain sedimentary rates since the Miocene. Results are found to support the contribution of an external load to the foreland evolution together with the Apenninic chain load. The interplay of the two types of loads resulted in spatial and temporal variations of the foredeep evolution that are quantified by palaeogeographic maps and sedimentation rates obtained through backstripping. Results are interpreted as representing the effects of a southward‐migrating wave linked to slab detachment beneath the Adriatic foredeep. This procedure can be useful to investigate similar problems on other chains worldwide.  相似文献   
144.
145.
Global sea-level rise and its relation to the terrestrial reference frame   总被引:4,自引:3,他引:1  
We examined the sensitivity of estimates of global sea-level rise obtained from GPS-corrected long term tide gauge records to uncertainties in the International Terrestrial Reference Frame (ITRF) realization. A useful transfer function was established, linking potential errors in the reference frame datum (origin and scale) to resulting errors in the estimate of global sea level rise. Contrary to scale errors that are propagated by a factor of 100%, the impact of errors in the origin depends on the network geometry. The geometry of the network analyzed here resulted in an error propagation factor of 50% for the Z component of the origin, mainly due to the asymmetry in the distribution of the stations between hemispheres. This factor decreased from 50% to less than 10% as the geometry of the network improved using realistic potential stations that did not yet meet the selection criteria (e.g., record length, data availability). Conversely, we explored new constraints on the reference frame by considering forward calculations involving tide gauge records. A reference frame could be found in which the scatter of the regional sea-level rates was limited. The resulting reference frame drifted by 1.36 ± 0.22? mm/year from the ITRF2000 origin in the Z component and by ?0.44 ± 0.22?mm/year from the ITRF2005 origin. A bound on the rate of global sea level rise of 1.2 to 1.6?mm/year was derived for the past century, depending on the origin of the adopted reference frame. The upper bound is slightly lower than previous estimates of 1.8?mm/year discussed in the IPCC fourth report.  相似文献   
146.
High precision Mg isotope measurements by multi-collector ion microprobe show that refractory olivines from the Allende chondrite, either olivines isolated in the matrix (2 samples studied) or olivines in type I chondrules (6 samples studied), have variable δ26Mg* enrichments and deficits (calculated in permil as the 26Mg deviation from the instrumental mass fractionation line) relative to the Earth. Most average δ26Mg* (noted δ26Mg*av) values (between 10 and 20 analyses per chondrule) are negative but the total range is from ?0.029 (± 0.010) ‰ (2 sigma errors) to + 0.011 (± 0.011) ‰ with an exception of one olivine at + 0.043 (± 0.023) ‰. These variations in δ26Mg*av reflect the formation of the olivines from reservoirs enriched in various amounts of 26Mg by the decay of short-lived 26Al (T1/2 = 0.73 Ma). Similarly, 30 analyses of olivines from the Eagle Station pallasite show a δ26Mg*av value of ?0.033 ± 0.008‰, as negative as some olivines from Allende chondrules and the Solar system initial δ26Mg* value of ?0.038 ± 0.004‰ (defined at the time of formation of type B Ca–Al-rich inclusions – CAIs – when 26Al/27Al = 5.23 × 10?5, Jacobsen et al., 2008).Because olivines are Al-poor and because their Mg isotopic compositions are not reset during the chondrule forming events, their δ26Mg*av can be used to calculate model crystallization ages relative to various theoretical Mg isotope growth curves. The two end-member scenarios considered are (i) a “nebular” growth in which the Al/Mg ratio remains chondritic and (ii) a “planetary” growth in which a significant increase of the Al/Mg ratio can be due to, for instance, olivine magmatic fractionation. The low δ26Mg*av value of olivines from the Eagle Station pallasite demonstrate that metal-silicate differentiation occurred as early as ~ 0. 15- 0. 23+ 0. 29 Ma after CAIs in either of the growth scenarios. Similarly the variable δ26Mg*av values of refractory olivines can be understood if they were formed in planetesimals which started to differentiate as early as the Eagle Station parent body. Accretion of these planetesimals must have been coeval to the formation of CAIs and their disruption could explain why their fragments (Mg-rich olivines) were distributed in the chondrule forming regions of the disk.  相似文献   
147.
A one-dimensional model is used to analyze, at the local scale, the response of the equatorial Atlantic Ocean under different meteorological conditions. The study was performed at the location of three moored buoys of the Pilot Research Moored Array in the Tropical Atlantic located at 10° W, 0° N; 10° W, 6° S; and 10° W, 10° S. During the EGEE-3 (Etude de la circulation océanique et de sa variabilité dans le Golfe de Guinee) campaign of May–June 2006, each buoy was visited for maintenance during 2 days. On board the ship, high-resolution atmospheric parameters were collected, as were profiles of temperature, salinity, and current. These data are used here to initialize, force, and validate a one-dimensional model in order to study the diurnal oceanic mixed-layer variability. It is shown that the diurnal variability of the sea surface temperatures is mainly driven by the solar heat flux. The diurnal response of the near-surface temperatures to daytime heating and nighttime cooling has an amplitude of a few tenths of degree. The computed diurnal heat budget experiences a net warming tendency of 31 and 27 W m−2 at 0° N and 10° S, respectively, and a cooling tendency of 122 W m−2 at 6° S. Both observed and simulated mixed-layer depths experience a jump between the nighttime convection phase and the well-stabilized diurnal water column. Its amplitude changes dramatically depending on the meteorological conditions occurring at the stations and reaches its maximum amplitude (~50 m) at 10° S. At 6° and 10° S, the presence of barrier layers is observed, a feature that is clearer at 10° S. Simulated turbulent kinetic energy (TKE) dissipation rates, compared to independent microstructure measurements, show that the model tracks their diurnal evolution reasonably well. It is also shown that the shear and buoyancy productions and the vertical diffusion of TKE all contribute to the supply of TKE, but the buoyancy production is the main source of TKE during the period of the simulation.  相似文献   
148.
The development of a coupled damage‐plasticity constitutive model for concrete is presented. Emphasis is put on thermodynamic admissibility, rigour and consistency both in the formulation of the model, and in the identification of model parameters based on experimental tests. The key feature of the thermodynamic framework used in this study is that all behaviour of the model can be derived from two specified energy potentials, following procedures established beforehand. Based on this framework, a constitutive model featuring full coupling between damage and plasticity in both tension and compression is developed. Tensile and compressive responses of the material are captured using two separate damage criteria, and a yield criterion with a multiple hardening rule. A crucial part of this study is the identification of model parameters, with these all being shown to be identifiable and computable based on standard tests on concrete. Behaviour of the model is assessed against experimental data on concrete. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
149.
Abstract— We present a database of magnetic susceptibility measurements on 971 ordinary chondrites. It demonstrates that this parameter can be successfully used to characterize and classify ordinary chondrite meteorites. In ordinary chondrites, this rapid and non‐destructive measurement essentially determines the amount of metal in the sample, which occurs in a very narrow range for each chondrite class (though terrestrial weathering can result in a variable decrease in susceptibility, especially in finds). This technique is particularly useful not only for a rapid classification of new meteorites, but also as a check against curation errors in large collections (i.e., unweathered meteorites, the measured susceptibility of which lies outside the expected range, may well be misclassified or misidentified samples). Magnetic remanence, related to magnetic field measurements around asteroids, is also discussed.  相似文献   
150.
 Two geochemical surveys carried out in March 1991 and September 1992 revealed the existence of a hydrothermal system in the southern portion of Montserrat Island, below Soufrière Hills Volcano. This conclusion is supported by the presence of: (a) the thermal springs of Plymouth which are fed by deep Na–Cl waters (Cl concentration ∼25 000 mg/kg, temperature ca. 250  °C) mixed with shallow steam-heated waters; (b) the four fumarolic fields of Galway's Soufrière, Gages Upper Soufrière, Gages Lower Soufrière, and Tar River Soufrière, where acid to neutral, steam-heated waters are present together with several fumarolic vents, discharging vapors formed through boiling of hydrothermal aqueous solutions. Involvement of magmatic fluids in the recharge of the hydrothermal aquifers is suggested by: (a) the high 3He/4He ratios of fumarolic fluids, i.e., 8.2 RA at Galway's Soufrière and 5.9 RA at Gages Lower Soufrière; (b) the δD and δ18O values of Na–Cl thermal springs and steam condensates, indicating the involvement of arc-type magmatic water in the formation of deep geothermal liquids; and (c) the CH4/CO2 ratios of fumarolic fluids, which are lower than expected for equilibrium with the FeO–FeO1.5 hydrothermal rock buffer, but being shifted towards the SO2–H2S magmatic gas buffer. Received: 26 March 1996 / Accepted: 19 July 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号