首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
大气科学   1篇
地球物理   5篇
地质学   14篇
海洋学   10篇
天文学   11篇
自然地理   3篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   6篇
  2005年   2篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1979年   1篇
  1967年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
The Analyzer of Space Plasma and EneRgetic Atoms (ASPERA-3) on board Mars Express is designed to study the interaction between the solar wind and the atmosphere of Mars and to characterize the plasma and neutral gas environment in near-Mars space. Neutral Particle Detectors (NPD-1 and 2), which form part of the ASPERA-3 instrument suite, are Energetic Neutral Atom (ENA) detectors which use the time-of-flight (ToF) technique to resolve the energy of detected particles. In the present study, we perform a statistical analysis of NPD ToF data collected between 14 March 2004 and 17 June 2004 when Mars Express was located at the dayside of Mars looking toward the planet. After pre-processing and removal of UV contamination, the ToF spectra were fitted with simple analytical functions so as to derive a set of parameters. The behavior of these parameters, as a function of spacecraft position and attitude, is compared with a model, which describes ENA generation by charge exchange between shocked solar wind protons and extended Martian exosphere. The observations and the model agree well, indicating that the recorded signals are charge-exchanged shocked solar wind.  相似文献   
2.
Demidov  A. B.  Gagarin  V. I.  Eremeeva  E. V.  Artemiev  V. A.  Polukhin  A. A.  Shchuka  S. A.  Grigoriev  A. V.  Khrapko  A. N.  Flint  M. V. 《Oceanology》2021,61(5):645-661
Oceanology - Spatial and vertical variability of primary production (PP) and Chl a were studied in the framework of the 76th cruise of R/V Akademik Mstislav Keldysh to the Kara Sea from July 7 to...  相似文献   
3.
Coastal erosion vs riverine sediment discharge in the Arctic Shelf seas   总被引:8,自引:0,他引:8  
This article presents a comparison of sediment input by rivers and by coastal erosion into both the Laptev Sea and the Canadian Beaufort Sea (CBS). New data on coastal erosion in the Laptev Sea, which are based on field measurements and remote sensing information, and existing data on coastal erosion in the CBS as well as riverine sediment discharge into both the Laptev Sea and the CBS are included. Strong regional differences in the percentages of coastal erosion and riverine sediment supply are observed. The CBS is dominated by the riverine sediment discharge (64.45᎒6 t a-1) mainly of the Mackenzie River, which is the largest single source of sediments in the Arctic. Riverine sediment discharge into the Laptev Sea amounts to 24.10᎒6 t a-1, more than 70% of which are related to the Lena River. In comparison with the CBS, the Laptev Sea coast on average delivers approximately twice as much sediment mass per kilometer, a result of higher erosion rates due to higher cliffs and seasonal ice melting. In the Laptev Sea sediment input by coastal erosion (58.4᎒6 t a-1) is therefore more important than in the CBS and the ratio between riverine and coastal sediment input amounts to 0.4. Coastal erosion supplying 5.6᎒6 t a-1 is less significant for the sediment budget of the CBS where riverine sediment discharge exceeds coastal sediment input by a factor of ca. 10.  相似文献   
4.
Thermoterraces in syngenetic ice complexes are widespread along the erosion dominated Yakutia Arctic coast. Thermoterraces progressively record quantitative information about their existence, which may be used to determine the mean shore retreat rate during the time they are present. Initial measurements of four thermoterraces on the south coast of the Dmitry Laptev Strait were carried out by the authors in 2002 and shore retreat rates were calculated. Comparison of erosion rates obtained using thermoterrace dimensions and geodetic survey results with those determined using aerial photographs showed that erosion rate values obtained in these two ways are approximately of the same order.  相似文献   
5.
The northernmost Kamchatka Peninsula is located along the northwestern margin of the Bering Sea and consists of complexly deformed accreted terranes. Progressing inland from the northwestern Bering Sea, the Olyutorskiy, Ukelayat and Koryak superterranes (OLY, UKL and KOR) are crossed. These terranes were accreted to the backstop Okhotsk-Chukotsk volcanic-plutonic belt (OChVB) in northernmost Kamchatka. A sedimentary sequence of Albian to Maastrichtian age overlaps the terranes and units of the Koryak superterrane, and constrains their accretion time. A paleomagnetic study of blocks within the Kuyul (KUY) terrane of the Koryak superterrane was completed at two localities (Camp 2: λ=61.83°N, φ=165.83°E and Camp 3: λ=61.67°N, φ=164.75°E). At both localities, paleomagnetic samples were collected from Late Triassic (225–208 Ma) limestone blocks (2–10 m in outcrop height) within a melange zone. Although weak in remanent magnetization, two components of remanent magnetization were observed during stepwise thermal demagnetization at 32 sites. The A component of magnetization was observed between room temperature and approximately 250 °C. This magnetic component is always of downward directed inclination and shows the best grouping at relatively low degrees of unfolding. Using McFadden–Reid inclination-only statistics and averaging all site means, the resulting A component mean is Iopt=60.3°, I95=5.0° and n=36 (sites). The B magnetic component is observed up to 565 °C, at which temperature, most samples have no measurable remanent magnetization, or growth of magnetic minerals has disrupted the thermal demagnetization process. Combining sites with Fisher estimates of kappa (k-value)≥13 and n (sites)≥3, where bedding orientation differs within a block, most of these sites show the best grouping of B component directions at 100% unfolding, and two of the blocks display remanent magnetizations of both upward and downward directed magnetic inclination. Combining sites with Fisher estimates of kappa (k-value)≥13 and n (sites)≥3, the resulting overall B component paleolatitude and associated uncertainty are λobs=30.4°N or S, λ95=8.9° and n=19 (sites). When compared with the expected North America paleolatitude of λAPWP expected=57.9°N, our data support a model in which blocks within the Koryak superterrane are allochthonous and far travelled.  相似文献   
6.
7.
The analysis of the structure of the cryolithozone, facies, and thicknesses of the Quaternary sediments and the results of the physicochemical mathematical modeling of the modern shelf of the western part of the Laptev Sea support the influence of the Late Pleistocene glaciations on the heat conditions and the distribution of the permafrost in the area. A ~200-m thick glacier formed under aerial conditions from atmospheric precipitation represented the metamorphosed snow cover. According to the modeling, the long-living (from 60?50 to 10?4 ky) glacier reduced the thickness of the permafrost rocks in the reviewed shelf area for 280–360 m. The Holocene marine transgression additionally decreased the thickness from 50–140 m on the inner shelf to 220–350 m on the outer shelf. The modern submarine cryolithozone 450-0 m thick is wide-spread in the studied region from the coast to the shelf boundary (isobaths of 130–140 m), where it pinches out at a distance of ~380 km from the coast at a depth of ~250 m above the sea level.  相似文献   
8.
Mars Express (MEX) Analyser of Space Plasmas and Energetic Atoms (ASPERA-3) data is providing insights into atmospheric loss on Mars via the solar wind interaction. This process is influenced by both the interplanetary magnetic field (IMF) in the solar wind and by the magnetic ‘anomaly’ regions of the martian crust. We analyse observations from the ASPERA-3 Electron Spectrometer near to such crustal anomalies. We find that the electrons near remanent magnetic fields either increase in flux to form intensified signatures or significantly reduce in flux to form plasma voids. We suggest that cusps intervening neighbouring magnetic anomalies may provide a location for enhanced escape of planetary plasma. Initial statistical analysis shows that intensified signatures are mainly a dayside phenomenon whereas voids are a feature of the night hemisphere.  相似文献   
9.
The ASPERA-3 experiment onboard the Mars Express spacecraft revealed, near the wake boundary of Mars, a spatially narrow, strip-like plasma structure composed of magnetosheath-like electrons and planetary ions. The peak electron energy often exceeds the peak energy at the bow shock that indicates a significant heating (acceleration) during the structure formation. It is shown that this structure is formed during efficient plasma penetration into the martian magnetosphere in the region near the terminator. The penetration of sheath electrons and their gradual heating (acceleration) is accompanied by a change of the ion composition from a solar wind plasma to a planetary plasma dominated by oxygen ions. A possible mechanism of plasma inflow to the magnetosphere is discussed.  相似文献   
10.
Electromagnetic soundings with the fields of natural (magnetotelluric (MT), and audio magnetotelluric (AMT)) and high-power controlled sources have been carried out in the region of the SG-6 (Tyumen) and SG-7 (En-Yakhin) superdeep boreholes in the Yamal-Nenets autonomous district (YaNAD). In the controlled-source soundings, the electromagnetic field was generated by the VL Urengoi-Pangody 220-kV industrial power transmission line (PTL), which has a length of 114 km, and ultralow-frequency (ULF) Zevs radiating antenna located at a distance of 2000 km from the signal recording sites. In the soundings with the Urengoi-Pangody PTL, the Energiya-2 generator capable of supplying up to 200 kW of power and Energiya-3 portable generator with a power of 2 kW were used as the sources. These generators were designed and manufactured at the Kola Science Center of the Russian Academy of Sciences. The soundings with the Energiya-2 generator were conducted in the frequency range from 0.38 to 175 Hz. The external generator was connected to the PTL in upon the agreement with the Yamal-Nenets Enterprise of Main Electric Networks, a branch of OAO FSK ES of Western Siberia. The connection was carried out by the wire-ground scheme during the routine maintenance of PTL in the nighttime. The highest-quality signals were recorded in the region of the SG-7 (En-Yakhin) superdeep borehole, where the industrial noise is lowest. The results of the inversion of the soundings with PTL and Zevs ULF transmitter completely agree with each other and with the data of electric logging. The MT-AMT data provide additional information about the deep structure of the region in the low-frequency range (below 1Hz). It is established that the section of SG-6 and SG-7 boreholes contains conductive layers in the depth intervals from 0.15 to 0.3 km and from 1 to 1.5 km. These layers are associated with the variations in the lithological composition, porosity, and fluid saturation of the rocks. The top of the poorly conductive Permian-Triassic complex is identified at a depth of about 7 km. On the basis of the MT data in the lowest frequency band (hourly and longer periods) with the observations at the Novosibirsk observatory taken into account, the distribution of electric resistivity up to a depth of 800 km is reconstructed. This distribution can be used as additional information when calculating the temperature and rheology of the lithosphere and upper mantle in West Siberia. The results of our studies demonstrate the high potential of the complex electromagnetic soundings with natural and controlled sources in the study of deep structure of the lithosphere and tracing deep oil-and-gas-bearing horizons in the sedimentary cover of the West Siberian Platform within the Yamal-Nenets autonomous district.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号