首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   5篇
  国内免费   1篇
测绘学   2篇
大气科学   13篇
地球物理   27篇
地质学   77篇
海洋学   3篇
天文学   14篇
自然地理   9篇
  2022年   1篇
  2021年   3篇
  2019年   7篇
  2018年   4篇
  2017年   1篇
  2016年   9篇
  2015年   8篇
  2014年   4篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   5篇
  2006年   9篇
  2005年   7篇
  2004年   2篇
  2003年   1篇
  2002年   5篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1980年   1篇
  1975年   2篇
  1974年   3篇
  1965年   2篇
  1964年   1篇
  1963年   2篇
  1962年   1篇
  1960年   3篇
  1959年   1篇
  1958年   2篇
  1957年   1篇
  1955年   1篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
31.
A sampling of Mesozoic and Tertiary basalts in Lebanon yielded the following information:
AgeDIα95Pole positiondpdm
Upper Jurassic95+2110.6114E 2N5.911.2
66W 2S
Lower Cretaceous122+29.0105E 25S4.59.0
75W 25N
Upper Pliocene2+467.7169E 88N6.39.8
11W 88S
These results confirm and amplify earlier work by Van Dongen et al., and can be interpreted as indicating a net anticlockwise rotation of Lebanon relative to the African tectonic plate amounting to about 70° during the Late Jurassic-Pliocene interval. This could have resulted from differential movement between the African and European plates as they made way for the growing Atlantic Ocean.  相似文献   
32.
Sans résumé The online version of the original article can be found at  相似文献   
33.
The Late Permian/Early Triassic succession of the Central European Basin (CEB) was repeatedly affected by the tectonic pulses associated with the earliest phases of Tethyan and Arctic–North Atlantic rifting. Effects of the differential tectonic subsidence are particularly well recorded by unconformities, which form widespread sequence boundaries. Such unconformities are most obvious in areas occupied by fault-controlled intra-basinal highs (swells). In that areas, stratigraphic loss may comprise entire Lower and Middle Buntsandstein formations and in places remnant Middle Buntsandstein successions directly rest on Permian strata. Analysis of 3D-seismic data and well logs combined with high-resolution sedimentological logging of drillcores at the western margin of the Ems Trough (NW Germany) reveals details of synsedimentary tectonic control on sequence development. Early Triassic extensional faulting of basement blocks provided stepwise addition of accommodation space for continental sequences by growth faulting along north–south oriented fault zones blocks on the flanks of the East Netherlands High. This process is most evident during the development of the Hardegsen Unconformity, which is characterised by an amalgamation of succeeding unconformity surfaces in areas of structurally controlled intrabasinal highs.  相似文献   
34.
Within the 1.16 Ga old Ilímaussaq intrusion, up to 700 m large autoliths occur in one stratigraphic unit of the layered floor series of agpaitic nepheline syenites (kakortokites). These autoliths consist of two different rock types: augite syenite and naujaite (agpaitic nepheline syenite). All three rock types show a number of alteration features related to the entrapment of the autoliths in the kakortokite magma caused by the interaction with a fluid phase.

In the kakortokites, the oxidation of primary arfvedsonite to aegirine and fluorite is restricted to the close proximity to the autoliths. Close to the surrounding kakortokite, the primary mafic phases of the augite syenites (augite, fayalite, Fe–Ti oxides) are completely replaced by arfvedsonite, aenigmatite, biotite, aegirine and fluorite. The decomposition of primary hastingsite to spectacular aegirine–augite–nepheline–aenigmatite symplectites can be observed up to several meters inside the autoliths. Additionally, fluorite formed at grain boundaries of primary nepheline. In the naujaite autoliths, primary arfvedsonite is replaced by aegirine–biotite intergrowths and abundant aenigmatite is occasionally replaced by Ti-rich aegirine and Fe–Ti oxides.

The mineral reactions in the autoliths are used to decipher details of the late to post-magmatic processes in a peralkaline syenitic intrusion. Mineral equilibria record an evolution governed by falling temperature (620 to ca. 500 °C) and increasing relative oxygen fugacity from FMQ + 1 to above FMQ + 4. Quantification of the observed mineral reactions reveals the infiltration of the autoliths with an oxidizing fluid phase rich in Na and F and minor addition of K. Volatiles (H and F) and in some cases also Fe, Ti and Ca (± Mg) released from primary autolith phases were mainly just relocated within the autoliths.  相似文献   

35.
It has long been recognized that albedo related vegetation feedbacks amplify climate variability in North Africa. Recent studies have revealed that areas of very high albedo associated with certain desert soil types contribute to the current dry climate of the region. We construct three scenarios of North African albedo, one based on satellite measurements, one where the highest albedo resembles that of soils in the desert transition zones, and one based on a vegetation map for the “green Sahara” state of the middle Holocene, ca. 6,000 years ago. Using a series of climate model simulations, we find that the additional amplitude of albedo change from the middle Holocene to the present caused by the very bright desert soils enhances the magnitude of the June-to-August precipitation change in the region of the present Sahara from 0.6 to 1.0 mm/day on average. We also find that albedo change has a larger effect on regional precipitation than changes in either the Earth’s orbit or sea surface temperatures between 6,000 years ago and today. Simulated precipitation agrees rather well with present observations and mid Holocene reconstructions. Our results suggest that there may exist an important climate feedback from soil formation processes that has so far not been recognized.  相似文献   
36.
Contributions to Mineralogy and Petrology - The 1.8–1.7&;nbsp;Ga Eidsfjord Anorthosite Complex on Langøy, Vesterålen, north Norway is thrust over monzonitic gneisses in a...  相似文献   
37.
Two large pegmatitic crystals of sodic pyroxene (aegirine) and sodic amphibole (arfvedsonite) from the agpaitic igneous Ilímaussaq Complex, south Greenland were found to be suitable as reference materials for in situ Li isotope determinations. Lithium concentrations determined by SIMS and micro‐drilled material analysed by MC‐ICP‐MS generally agreed within analytical uncertainty. The arfvedsonite crystal was homogeneous with [Li] = 639 ± 51 μg g?1 (2s, n = 69, MC‐ICP‐MS and SIMS results). The aegirine crystal shows strongly developed sector zoning, which is a common feature of aegirines. Using qualitative element mapping techniques (EPMA), the homogeneous core of the crystal was easily distinguished from the outermost sectors of the crystals. The core had a mean [Li] of 47.6 ± 3.6 μg g?1 (2s, n = 33) as determined by SIMS. The seven micro‐drilled regions measured by solution MC‐ICP‐MS returned slightly lower concentrations (41–46 μg g?1), but still overlap with the SIMS data within uncertainty. Based on MC‐ICP‐MS and SIMS analyses, the variation in δ7Li was about 1‰ in each of the two crystals, which is smaller than that in widely used glass reference materials, making these two samples suitable to serve as reference materials. There was, however, a significant offset between the results of MC‐ICP‐MS and SIMS. The latter deviated from the MC‐ICP‐MS results by ?6.0 ± 1.9‰ (2s) for the amphibole and by ?3.9 ± 1.9‰ (2s) for the aegirine. This indicates the presence of a significant matrix effect in SIMS determinations of Li isotopes for amphibole and pyroxene relative to the basalt glasses used for calibration. Based on the MC‐ICP‐MS results, mean δ7Li values of +0.7 ± 1.2‰ (2s, n = 10) for the arfvedsonite crystal and of ?3.7 ± 1.2‰ (2s, n = 7) for the core of the aegirine crystal were calculated. Adopting these values, SIMS users can correct for the specific IMF (instrumental mass fractionation) of the ion probe used. We propose that these two crystals serve as reference materials for in situ Li isotope determinations by SIMS and pieces of these two crystals are available from the first author upon request.  相似文献   
38.
Agpaitic rocks comprise most of the exposed part of the 1.16 Ga old, 8 × 17 km large and about 1700 m thick Ilímaussaq intrusion in South Greenland. Within these, more than 600 m thick sequence of sodalite-rich “naujaites” (mainly sodalite + arfvedsonite + alkali feldspar + nepheline + eudialyte + aenigmatite) are interpreted as a sodalite flotation cumulate. Sodalites show two to three different zones in cathodoluminescence (CL) and at least two zones in thin sections. The CL zones can be related to chemical differences detectable by electron microprobe, whereas relations with optical zonations are less obvious. Compositional trends in sodalite reflect trends in the evolution of volatile contents in the melt. The sodalite at Ilímaussaq is almost free of Ca and closely corresponds to the pure Na–Cl sodalite endmember with about 7 wt.% of Cl; S contents reach up to 0.9 wt.%. Cl/Br ratios range from 500 to 1700. Raman spectroscopy shows that S is present as [SO4]2− in sodalite, although sphalerite (ZnS) is a stable phase in naujaites. Peralkalinity and fO2 conditions allow S2− and [SO4]2− to be present contemporaneously.

The whole naujaite sequence is divided into two parts, an upper part with low, homogeneous S contents and Cl/Br ratios in the sodalite cores, and a lower part with strongly variable and higher S contents and with Cl/Br ratios, which are decreasing downwards. The details of the S content and the Cl/Br ratio evolution show that sodalite strongly influences the halogen contents of the melt by scavenging Cl and Br.

The naujaites were formed from a highly reduced, halogen-rich magma in equilibrium with magmatic methane at about 800 °C, which, upon ascent, cooling and fractionation, exsolved an aqueous fluid phase. Both fluids were trapped in separate inclusions indicating their immiscibility.

Micrometer-sized aegirine crystals and primary hydrocarbon-bearing inclusions are abundant in the crystal cores. The inclusions were trapped at pressures up to 4 kbar, although the emplacement pressure of the intrusion is about 1 kbar. This indicates growth of the sodalite during melt ascent and a very effective mechanism of trace element scavenging during sodalite growth. Sodalite rims are devoid of aegirine or primary hydrocarbon inclusions and probably reflect the emplacement stage.  相似文献   

39.
The stable copper isotope composition of 79 samples of primary and secondary copper minerals from hydrothermal veins in the Schwarzwald mining district, South Germany, shows a wide variation in δ65Cu ranging from −2.92 to 2.41‰. We investigated primary chalcopyrite, various kinds of fahlores and emplectite, as well as supergene native copper, malachite, azurite, cuprite, tenorite, olivenite, pseudomalachite and chrysocolla. Fresh primary Cu(I) ores have at most localities copper isotope ratios (δ65Cu values) of 0 ± 0.5‰ despite the fact that the samples come from mineralogically different types of deposits covering an area of about 100 by 50 km and that they formed during three different mineralization events spanning the last 300 Ma. Relics of the primary ores in oxidized samples (i.e., chalcopyrite relics in an iron oxide matrix with an outer malachite coating) display low isotope ratios down to −2.92‰. Secondary Cu(I) minerals such as cuprite have high δ65Cu values between 0.4 and 1.65‰, whereas secondary Cu(II) minerals such as malachite show a range of values between −1.55 and 2.41‰, but typically have values above +0.5‰. Within single samples, supergene oxidation of fresh chalcopyrite with a δ value of 0‰ causes significant fractionation on the scale of a centimetre between malachite (up to 1.49‰) and relict chalcopyrite (down to −2.92‰). The results show that—with only two notable exceptions—high-temperature hydrothermal processes did not lead to significant and correlatable variations in copper isotope ratios within a large mining district mineralized over a long period of time. Conversely, low-temperature redox processes seriously affect the copper isotope compositions of hydrothermal copper ores. While details of the redox processes are not yet understood, we interpret the range in compositions found in both primary Cu(I) and secondary Cu(II) minerals as a result of two competing controls on the isotope fractionation process: within-fluid control, i.e., the fractionation during the redox process among dissolved species, and fluid-solid control, i.e., fractionation during precipitation involving reactions between dissolved Cu species and minerals. Additionally, Rayleigh fractionation in a closed system may be responsible for some of the spread in isotope compositions. Our study indicates that copper isotope variations may be used to decipher details of natural redox processes and therefore may have some bearing on exploration, evaluation and exploitation of copper deposits. On the other hand, copper isotope analyses of single archeological artefacts or geological or biological objects cannot be easily used as reliable fingerprint for the source of copper, because the variation caused by redox processes within a single deposit is usually much larger than the inter-deposit variation.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号