首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   1篇
  国内免费   1篇
测绘学   9篇
大气科学   1篇
地球物理   16篇
地质学   10篇
海洋学   4篇
天文学   13篇
综合类   3篇
自然地理   7篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   6篇
  1999年   2篇
  1997年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
21.
Surface displacements due to temporal changes in environmental mass redistributions are observable in the coordinate time series of many Global Navigation Satellite System (GNSS) sites. In this study, we investigated the effect of loading on estimates of tectonic velocity computed from campaign-style GNSS observations. The study region is in the Pyrenees mountain range between France and Spain (ResPyr campaigns). In this area, seismic activity is continuous and moderate and the expected amplitude of the horizontal tectonic velocity is less than 0.5 mm/yr. In order to determine the velocity, 4 sparse GNSS campaigns were carried out from 1995 to 2010. Considering this small rate of deformation, loading phenomena can contribute a non-negligible artifact to the velocity computation that could affect our geodynamical interpretation. In this investigation, we specifically considered the atmospheric, hydrological, and non-tidal ocean loading phenomena. The computed loading deformations for this region show the horizontal displacements are dominated by the non-tidal ocean loading (maximum 4 mm for the North and 3.1 mm for the East components); the main vertical contributions are due to the atmospheric and continental water storage loading (maximum 14.3 for the atmosphere and 8.1 mm for the hydrology, respectively). We have found that the dominant loading effect on the horizontal velocity is the non-tidal ocean loading (mean of 0.11 mm/yr), whereas the vertical component is dominated by the hydrological loading (mean of 0.21 mm/yr). Since the study area is in a mountainous region, we also analyzed the difference between the atmospheric and the topography dependent atmospheric loading models at our GNSS campaign sites. We did not find any significant difference between the two atmospheric loading models in terms of horizontal velocity. Finally, we performed simulations to identify the optimum timing and frequency of future GNSS campaigns in this area that would minimize the loading effects on tectonic velocity estimates.  相似文献   
22.
The solar spectrum is a key parameter for different scientific disciplines such as solar physics, climate research, and atmospheric physics. The SOLar SPECtrometer (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to measure the solar spectral irradiance (SSI) from 165 to 3088 nm with high accuracy. To cover the full wavelength range, three double-monochromators with concave gratings are used. We present here a thorough analysis of the data from the third channel/double-monochromator, which covers the spectral range between 656 and 3088 nm. A new reference solar spectrum is therefore obtained in this mainly infrared wavelength range (656 to 3088 nm); it uses an absolute preflight calibration performed with the blackbody of the Physikalisch-Technische Bundesanstalt (PTB). An improved correction of temperature effects is also applied to the measurements using in-flight housekeeping temperature data of the instrument. The new solar spectrum (SOLAR–IR) is in good agreement with the ATmospheric Laboratory for Applications and Science (ATLAS?3) reference solar spectrum from 656 nm to about 1600 nm. However, above 1600 nm, it agrees better with solar reconstruction models than with spacecraft measurements. The new SOLAR/SOLSPEC measurement of solar spectral irradiance at about 1600 nm, corresponding to the minimum opacity of the solar photosphere, is 248.08 ± 4.98 mW?m?2?nm?1 (1?\(\sigma\)), which is higher than recent ground-based evaluations.  相似文献   
23.
Damé  Luc  Cram  Lawrence 《Solar physics》1983,87(2):329-335
Solar Physics - We show that some recently published semi-empirical models for solar flares predict a significant flux of visible continuum radiation, due to bound-free radiation from hydrogen...  相似文献   
24.
Large-scale mass redistribution in the terrestrial water storage (TWS) leads to changes in the low-degree spherical harmonic coefficients of the Earth’s surface mass density field. Studying these low-degree fluctuations is an important task that contributes to our understanding of continental hydrology. In this study, we use global GNSS measurements of vertical and horizontal crustal displacements that we correct for atmospheric and oceanic effects, and use a set of modified basis functions similar to Clarke et al. (Geophys J Int 171:1–10, 2007) to perform an inversion of the corrected measurements in order to recover changes in the coefficients of degree-0 (hydrological mass change), degree-1 (centre of mass shift) and degree-2 (flattening of the Earth) caused by variations in the TWS over the period January 2003–January 2015. We infer from the GNSS-derived degree-0 estimate an annual variation in total continental water mass with an amplitude of \((3.49 \pm 0.19) \times 10^{3}\) Gt and a phase of \(70^{\circ } \pm 3^{\circ }\) (implying a peak in early March), in excellent agreement with corresponding values derived from the Global Land Data Assimilation System (GLDAS) water storage model that amount to \((3.39 \pm 0.10) \times 10^{3}\) Gt and \(71^{\circ } \pm 2^{\circ }\), respectively. The degree-1 coefficients we recover from GNSS predict annual geocentre motion (i.e. the offset change between the centre of common mass and the centre of figure) caused by changes in TWS with amplitudes of \(0.69 \pm 0.07\) mm for GX, \(1.31 \pm 0.08\) mm for GY and \(2.60 \pm 0.13\) mm for GZ. These values agree with GLDAS and estimates obtained from the combination of GRACE and the output of an ocean model using the approach of Swenson et al. (J Geophys Res 113(B8), 2008) at the level of about 0.5, 0.3 and 0.9 mm for GX, GY and GZ, respectively. Corresponding degree-1 coefficients from SLR, however, generally show higher variability and predict larger amplitudes for GX and GZ. The results we obtain for the degree-2 coefficients from GNSS are slightly mixed, and the level of agreement with the other sources heavily depends on the individual coefficient being investigated. The best agreement is observed for \(T_{20}^C\) and \(T_{22}^S\), which contain the most prominent annual signals among the degree-2 coefficients, with amplitudes amounting to \((5.47 \pm 0.44) \times 10^{-3}\) and \((4.52 \pm 0.31) \times 10^{-3}\) m of equivalent water height (EWH), respectively, as inferred from GNSS. Corresponding agreement with values from SLR and GRACE is at the level of or better than \(0.4 \times 10^{-3}\) and \(0.9 \times 10^{-3}\) m of EWH for \(T_{20}^C\) and \(T_{22}^S\), respectively, while for both coefficients, GLDAS predicts smaller amplitudes. Somewhat lower agreement is obtained for the order-1 coefficients, \(T_{21}^C\) and \(T_{21}^S\), while our GNSS inversion seems unable to reliably recover \(T_{22}^C\). For all the coefficients we consider, the GNSS-derived estimates from the modified inversion approach are more consistent with the solutions from the other sources than corresponding estimates obtained from an unconstrained standard inversion.  相似文献   
25.
Temporal variations in the geographic distribution of surface mass cause surface displacements. Surface displacements derived from GRACE gravity field coefficient time series also should be observed in GPS coordinate time series, if both time series are sufficiently free of systematic errors. A successful validation can be an important contribution to climate change research, as the biggest contributors to mass variability in the system Earth include the movement of oceanic, atmospheric, and continental water and ice. In our analysis, we find that if the signals are larger than their precision, both geodetic sensor systems see common signals for almost all the 115 stations surveyed. Almost 80% of the stations have their signal WRMS decreased, when we subtract monthly GRACE surface displacements from those observed by GPS data. Almost all other stations are on ocean islands or small peninsulas, where the physically expected loading signals are very small. For a fair comparison, the data (79 months from September 2002 to April 2009) had to be treated appropriately: the GPS data were completely reprocessed with state-of-the-art models. We used an objective cluster analysis to identify and eliminate stations, where local effects or technical artifacts dominated the signals. In addition, it was necessary for both sets of results to be expressed in equivalent reference frames, meaning that net translations between the GPS and GRACE data sets had to be treated adequately. These data sets are then compared and statistically analyzed: we determine the stability (precision) of GRACE-derived, monthly vertical deformation data to be ~1.2 mm, using the data from three GRACE processing centers. We statistically analyze the mean annual signals, computed from the GPS and GRACE series. There is a detailed discussion of the results for five overall representative stations, in order to help the reader to link the displayed criteria of similarity to real data. A series of tests were performed with the goal of explaining the remaining GPS–GRACE residuals.  相似文献   
26.
We present observations of the uranian ring system at a wavelength of 2.2 μm, taken between 2003 and 2008 with NIRC2 on the W.M. Keck telescope in Hawaii, and on 15–17 August 2007 with NaCo on the Very Large Telescope (VLT) in Chile. Of particular interest are the data taken around the time of the uranian ring plane crossing with Earth on 16 August 2007, and with the Sun (equinox) on 7 December 2007. We model the data at the different viewing aspects with a Monte Carlo model to determine: (1) the normal optical depth τ0, the location, and the radial extent of the main rings, and (2) the parameter 0 (A is the particle geometric albedo), the location, and the radial plus vertical extent of the dusty rings. Our main conclusions are: (i) The brightness of the ? ring is significantly enhanced at small phase and ring inclination angles; we suggest this extreme opposition effect to probably be dominated by a reduction in interparticle shadowing. (ii) A broad sheet of dust particles extends inwards from the λ ring almost to the planet itself. This dust sheet has a vertical extent of ∼140 km, and 0 = 2.2 × 10−6. (iii) The dusty rings between ring 4 and the α ring and between the α and β rings are vertically extended with a thickness of ∼300 km. (iv) The ζ ring extends from ∼41,350 km almost all the way inwards to the planet. The main ζ ring, centered at ∼39,500 km from the planet, is characterized by 0 = 3.7 × 10−6; this parameter decreases closer to the planet. The ζ ring has a full vertical extent of order 800–900 km, with a pronounced density enhancement in the mid-plane. (v) The ηc ring is optically thin and less than several tens of km in the vertical direction. This ring may be composed of macroscopic material, surrounded by clumps of dust.  相似文献   
27.
Three different environmental loading methods are used to estimate surface displacements and correct non-linear variations in a set of GPS weekly height time series. Loading data are provided by (1) Global Geophysical Fluid Center (GGFC), (2) Loading Model of Quasi-Observation Combination Analysis software (QLM) and (3) our own daily loading time series (we call it OMD for optimum model data). We find that OMD has the smallest scatter in height across the selected 233 globally distributed GPS reference stations, GGFC has the next smallest variability, and QLM has the largest scatter. By removing the load-induced height changes from the GPS height time series, we are able to reduce the scatter on 74, 64 and 41 % of the stations using the OMD models, the GGFC model and QLM model respectively. We demonstrate that the discrepancy between the center of earth (CE) and the center of figure (CF) reference frames can be ignored. The most important differences between the predicted models are caused by (1) differences in the hydrology data from the National Center for Atmospheric Research (NCEP) vs. those from the Global Land Data Assimilation System (GLDAS), (2) grid interpolation, and (3) whether the topographic effect is removed or not. Both QLM and GGFC are extremely convenient tools for non-specialists to use to calculate loading effects. Due to the limitation of NCEP reanalysis hydrology data compared with the GLDAS model, the GGFC dataset is much more suitable than QLM for applying environmental loading corrections to GPS height time series. However, loading results for Greenland from GGFC should be discarded since hydrology data from GLDAS in this region are not accurate. The QLM model is equivalent to OMD in Greenland and, hence, could be used as a complement to the GGFC product to model the load in this region. We find that the predicted loading from all three models cannot reduce the scatter of the height coordinate for some stations in Europe.  相似文献   
28.
The effects of the photosystem II (PSII) herbicide diuron was assessed on thirteen tropical foraminifera hosting diatom, dinoflagellate, red or green algae endosymbionts. Inhibition of photosynthesis (reduced ΔF/F(m)(')) by diuron depended on both symbiont type and test ultrastructure, with greatest sensitivity observed for diatom- and chlorophyte-hosting species (24h IC(25) 2.5-4μg L(-1)). Inhibition kinetics was slow (24-48h until maximum inhibition) in comparison with corals, suggesting structural differences may influence herbicide uptake and transport. Although foraminifera were generally less sensitive to direct effects of diuron (inhibition ΔF/F(m)(')) than other marine phototrophs, damage to PSII (reduction F(v)/F(m)) occurred at concentrations lower than observed for other organisms (24h IC(25) 3-12μg L(-1)). Damage to PSII was highly light dependent and occurred at very low light intensities indicating limited photoprotective capacity. The high diversity, widespread occurrence and relative sensitivity make foraminifera good bioindicator organisms to evaluate phytotoxic stress on coral reefs.  相似文献   
29.
We present the first dynamical solution of the triple asteroid system (45) Eugenia and its two moons Petit–Prince (diameter ∼ 7 km) and S/2004 (45) 1 (diameter ∼ 5 km). The two moons orbit at 1165 and 610 km from the primary, describing an almost-circular orbit (e ∼ 6 × 10−3 and e ∼ 7 × 10−2 respectively). The system is quite different from the other known triple systems in the main belt since the inclinations of the moon orbits are sizeable (9° and 18° with respect to the equator of the primary respectively). No resonances, neither secular nor due to Lidov–Kozai mechanism, were detected in our dynamical solution, suggesting that these inclinations are not due to excitation modes between the primary and the moons. A 10-year evolution study shows that the orbits are slightly affected by perturbations from the Sun, and to a lesser extent by mutual interactions between the moons. The estimated J2 of the primary is three times lower than the theoretical one, calculated assuming the shape of the primary and an homogeneous interior, possibly suggesting the importance of other gravitational harmonics.  相似文献   
30.
本文着重分析了青藏高原500hpa高压因伊朗高压脊东伸、分裂产生过程中和东移过程中,西风带波动、印度季风低压以及100hpa层流型的一系列变化,从而说明青藏高原500hpa高压产生和东移的环流背景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号