首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   2篇
  国内免费   9篇
测绘学   5篇
大气科学   12篇
地球物理   25篇
地质学   68篇
海洋学   17篇
天文学   79篇
综合类   5篇
自然地理   30篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   9篇
  2017年   10篇
  2016年   5篇
  2015年   4篇
  2014年   7篇
  2013年   10篇
  2012年   4篇
  2011年   9篇
  2010年   13篇
  2009年   12篇
  2008年   13篇
  2007年   14篇
  2006年   16篇
  2005年   12篇
  2004年   13篇
  2003年   10篇
  2002年   9篇
  2001年   5篇
  2000年   8篇
  1999年   10篇
  1998年   8篇
  1997年   4篇
  1996年   8篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1934年   1篇
排序方式: 共有241条查询结果,搜索用时 62 毫秒
191.
We investigated initiation and propagation of compaction bands (CB) in six wet and four dry Bentheim sandstone samples deformed in axial compression tests with strain rates ranging from 3.2 × 10?8 s?1 to 3.2 × 10?4 s?1. Circumferential notches with 0.8-mm width and 5-mm depth served to initiate CB at mid-sample length. Wet samples were saturated with distilled water and deformed at 195 MPa confining pressure and 10 MPa pore pressure. Dry samples were deformed at 185 MPa confining pressure. Twelve P-wave sensors, eight S-wave sensors and two pairs of orthogonally oriented strain-gages were glued to the sample surface to monitor acoustic emission (AE), velocities and local strain during the loading process. Nucleation of compaction bands is indicated by AE clusters close to the notch tips. With progressive loading, AE activity increased and AE hypocenters indicated propagation of a single CB normal to the sample axis. CB propagation from the sample periphery towards the centre was monitored. Microstructural analysis of deformed samples shows excellent agreement between location of AE clusters and CBs. In both dry and wet samples the lateral propagation of CBs was about 100 times faster than axial shortening rates. At the slowest displacement rate, AE activity during band propagation was reduced and CB nucleation in wet samples occurred at 20% lower stresses. This may indicate an increasing contribution of stress corrosion processes to the formation of the compaction bands. In dry and wet samples inelastic compaction energy per area ranged between 16 and 80 kJ m?2. This is in good agreement with previous estimates from laboratory and field studies.  相似文献   
192.
The geoarchaeology of Diring Yuriakh, perhaps the oldest firmly documented archaeological site in Siberia, at more than 260,000 years old, is important for modeling the peopling of Northern Asia and North America. This article focuses on some important details about the stratigraphy of the Diring site, which have previously only been published in Russian. There are two major geoarchaeological problems at Diring. First, the stratigraphic position of the layer containing the supposed pebble tools (relative to Middle Pleistocene sediments at the site) is not well defined. Second, there remains doubt as to the nature of the association between the majority of the Diring artifacts and the sediments dated to between ca. 267,000 and 366,000 years ago. Until these problems are resolved, the proposed Lower Paleolithic dating for the Diring site must be considered as provisional. © 1999 John Wiley & Sons, Inc.  相似文献   
193.
194.
This paper presents the first detailed study of a late Pleistocene marine tephra sequence from the NW Pacific, downwind from the Kamchatka volcanic arc. Sediment core SO201-2-40, located on the Meiji Rise ~400 km offshore the peninsula, includes 25 tephras deposited within the last 215 ka. Volcanic glass from the tephras was characterized using single-shard electron microprobe analysis and laser ablation inductively coupled mass spectrometry. The age of tephras was derived from a new age model based on paleomagnetic and paleoclimate studies. Geochemical correlation of distal tephras to Kamchatkan pyroclastic deposits allowed the identification of tephras from the Karymsky, Gorely, Opala and Shiveluch eruptive centers. Three of these tephras were also correlated to other marine and terrestrial sites and hence are identified as the best markers for the north-west Pacific region. These are an early Holocene tephra from the Karymsky caldera (~8.7 ka) and two tephras falling into the Marine Isotope Stage (MIS) 6 glacial time: an MIS 6.4 tephra from Shiveluch (~141 ka) and the MIS 6.5 Rauchua tephra (~175 ka) from Karymsky. The data presented in this study can be used in paleovolcanological and paleoceanographic reconstructions.  相似文献   
195.
Young massive stars in the central parsec of our Galaxy are best explained by star formation within at least one, and possibly two, massive self-gravitating gaseous discs. With help of numerical simulations, we here consider whether the observed population of young stars could have originated from a large angle collision of two massive gaseous clouds at   R ≃ 1 pc  from Sgr A*. In all the simulations performed, the post-collision gas flow forms an inner, nearly circular gaseous disc and one or two eccentric outer filaments, consistent with the observations. Furthermore, the radial stellar mass distribution is always very steep,  Σ*∝ R −2  , again consistent with the observations. All of our simulations produce discs that are warped by between 30° and 60°, in accordance with the most recent observations. The three-dimensional velocity structure of the stellar distribution is sensitive to initial conditions (e.g. the impact parameter of the clouds) and gas cooling details. For example, the runs in which the inner disc is fed intermittently with material possessing fluctuating angular momentum result in multiple stellar discs with different orbital orientations, contradicting the observed data. In all the cases the amount of gas accreted by our inner boundary condition is large, enough to allow Sgr A* to radiate near its Eddington limit over ∼105 yr. This suggests that a refined model would have physically larger clouds (or a cloud and a disc such as the circumnuclear disc) colliding at a distance of a few parsecs rather than 1 pc as in our simulations.  相似文献   
196.
In the late 1990s, the Fazenda Largo kimberlite cluster was discovered in the Piauí State of Brazil. As with earlier known kimberlites in this area – Redondão, Santa Filomena-Bom Jesus (Gilbues) and Picos – this cluster is located within the Palaeozoic Parnaiba Sedimentary Basin that separates the São Francisco and the Amazonian Precambrian cratons. Locations of kimberlites are controlled by the ‘Transbrasiliano Lineament’. The Fazenda Largo kimberlites are intensely weathered, almost completely altered rocks with a fine-grained clastic structure, and contain variable amounts of terrigene admixture (quartz sand). These rocks represent near-surface volcano-sedimentary deposits of the crater parts of kimberlite pipes. By petrographic, mineralogical and chemical features, the Fazenda Largo kimberlites are similar to average kimberlite. The composition of the deep-seated material in the Fazenda Largo kimberlites is quite diverse: among mantle microxenoliths are amphibolitised pyrope peridotites, garnetised spinel peridotites, ilmenite peridotites, chromian spinel + chromian diopside + pyrope intergrowths, and large xenoliths of pyrope dunite. High-pressure minerals are predominantly of the ultramafic suite, Cr-association minerals (purplish-red and violet pyrope, chromian spinel, chromian diopside, Cr-pargasite and orthopyroxene). The Ti-association minerals of the ultramafic suite (picroilmenite and orange pyrope), as well as rare grains of orange pyrope-almandine of the eclogite association, are subordinate. Kimberlites from all four pipes contain rare grains of G10 pyrope of the diamond association, but chromian spinel of the diamond association was not encountered. By their tectonic position, by geochemical characteristics, and by the composition of kimberlite indicator minerals, the Fazenda Largo kimberlites, like the others of such type, are unlikely to be economic.  相似文献   
197.
Using the data of long-term (1958–2012) actinometric and meteorological observations of the Meteorological Observatory of Lomonosov Moscow State University, the observed and computed long-wave fluxes and the factors defining their variability are estimated. Obtained are the normals and determined are the limits of variability of effective radiation. Analyzed are the peculiarities of atmospheric back radiation. Demonstrated is the trend towards the decrease (in absolute value) in effective radiation caused by the increase in the atmospheric back radiation flux (E a). The trend towards the increase in the atmospheric back radiation is determined by the increase in the values of meteorological parameters: cloudiness, atmospheric moisture content, and temperature. The content of aerosol and carbon dioxide does not affect the long-term variations of E a registered in Moscow. Derived empirical formulae can be recommended for estimating the atmospheric back radiation and effective radiation of the Earth surface using meteorological observations.  相似文献   
198.
Jom-Bolok volcanic field is located in the East Sayan Mts. of Siberia (Russia), a portion of the Asian convergent zone. It is located at the boundary of the Riphean Tuva-Mongolia massif, which was probably reactivated because of the interplay between far-field tectonic stress derived from the India–Asia collision zone and extension in the south-western Baikal rift system. The volcanic field comprises a number of hawaiitic lava flows, of various lengths, which flowed down paleorivers. Flows were fed by fissure eruptions and the largest lava flow field was dated as 7,130?±?140 cal 14C years BP using a buried organic sample found inside the associated cinder cone. This lava flow field is about 70 km long, ~100 km2 in area, and 7.9 km3 in volume. The area and volume of this flow field ranks this eruption highly in the global record of fissure-fed effusive eruptions. This lava flow field makes up 97% of the entire Jom-Bolok volcanic field, a fact which raises a puzzling question: why and/or how did a relatively small-volume volcanic field produce such a large-volume individual eruption? A working hypothesis is that a pond of sublithospheric melt accumulated over a relatively prolonged period. This was then rapidly drained in response of tectonic changes triggered by unloading of ice in the Early Holocene.  相似文献   
199.
The northernmost part of the Kamchatka Peninsula of northeastern Russia, located along the northwestern margin of the Bering Sea, consists of zones of complexly deformed accreted terranes. Progressing from the northwestern Bering Sea inland are the Olyutorskiy, Ukelayat, and Koryak superterranes, which were accreted to the Okhotsk–Chukotsk volcanic–plutonic belt (OChVB) during the Campanian–Maastrichtian (Koryak) to Middle Eocene (Olyutorskiy), respectively. To constrain the accretion paleolatitude of the Koryak superterrane, we paleomagnetically sampled a sedimentary series on the Mametchinskiy Peninsula. At the Mametchinskiy Peninsula, in the northeastern Penzhinskaya Guba (61.45° N, 163.75° E), a gently deformed, well-bedded section of fine-grained Lower to lower Upper Cretaceous turbidites, the Mametchinskaya and Tylakrylskaya Formations are exposed. These strata, which represent the lower part of the sedimentary cover of the terranes in this region and the forearc of OChVB, were sampled at 39 sites (three to seven samples per site). Within the Ainyn terrane, more than 1000 m of section of Cenomanian–Turonian age was sampled at a basal locality (sample groups I and II, sites 1–18, 19–29) and at an upper locality of Valanginian–Barremian age (sample group III, sites 30–39) along the western shore of the Peninsula. Thermal demagnetization and principal component analysis of the demagnetization data show lower-temperature (A) and higher-temperature (B) magnetic components. Although group III samples did not display a coherent A component, the A component of group I and II samples was observed as a single-polarity lower-unblocking temperature component generally removed by 100–400 °C. This component failed the fold test at the 95% confidence level. With respect to direction, the A component is similar to both the present-day field and axial–geocentric dipole directions expected at this site. The B component was observed during thermal demagnetization steps up to 580 °C and was always of downward-directed inclination. Coherence of bedding corrections within each section do not allow statistically meaningful fold tests within groups I, II or III. Assuming the B component represents a Cretaceous magnetization, two overall models are proposed. In the first model (preferred), with the highest clustering of directions (k-value=36.7, N (sites)=36), indicates significant poleward motion of the Ainyn terrane (observed paleolatitude λM1=61.0±6.5°; expected North America plate reference site paleolatitude λE=74.0±3.5°). In the second model, no significant poleward displacement is implied (λM2=72.0±9.6).  相似文献   
200.
Stable isotopes, geochemical, lithological, and micropaleontological results from cores from the far northwest (FNW) Pacific and the Okhotsk and Bering seas are used to reconstruct the regional environment for the last glaciation, the deglacial transition, and the Holocene. δ18O records of planktonic foraminifera of the region show two “light” shifts during deglacial time, provoked by the freshening of the surface water and climate warming. These north Pacific terminal events (T1ANP and T1BNP) with ages of 12,500 and 9300 yr B.P., respectively, occur almost simultaneously with two episodes of accelerated glacier melting around the North Atlantic. Along with the isotopic shifts, the CaCO3content in regional sediments increased abruptly (1A and 1B carbonate peaks), probably due to changes of productivity and pore water chemistry of surface sediments. Organic matter and opal concentration increased during the transition (between T1ANP and T1BNP events) in the sediments of the FNW Pacific and the southern part of the Bering Sea and opal content increased in the Holocene in the Bering and Okhotsk Seas. δ13C records of cores from the Okhotsk and Bering seas and the FNW Pacific do not contradict the hypothesis of increased intermediate water formation in the region during glaciation. During deglaciation, accumulation of the coarse terrigenous component decreased in sediments of the Bering Sea and the FNW Pacific before the T1ANP event, probably as a result of rising sea level and opening of the Bering Strait.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号