全文获取类型
收费全文 | 103篇 |
免费 | 4篇 |
国内免费 | 1篇 |
专业分类
测绘学 | 5篇 |
大气科学 | 6篇 |
地球物理 | 28篇 |
地质学 | 29篇 |
海洋学 | 7篇 |
天文学 | 20篇 |
综合类 | 5篇 |
自然地理 | 8篇 |
出版年
2022年 | 1篇 |
2021年 | 3篇 |
2020年 | 4篇 |
2019年 | 1篇 |
2018年 | 7篇 |
2017年 | 5篇 |
2016年 | 9篇 |
2015年 | 3篇 |
2014年 | 7篇 |
2013年 | 7篇 |
2012年 | 3篇 |
2011年 | 6篇 |
2010年 | 5篇 |
2009年 | 5篇 |
2008年 | 5篇 |
2007年 | 2篇 |
2006年 | 3篇 |
2005年 | 3篇 |
2004年 | 2篇 |
2003年 | 3篇 |
2002年 | 2篇 |
1999年 | 2篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1995年 | 1篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1982年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1970年 | 1篇 |
排序方式: 共有108条查询结果,搜索用时 15 毫秒
101.
The interaction between solid structures and free-surface flows is investigated in this study. A Smoothed Particle Hydrodynamics (SPH) model is used in the investigation and is verified against analytical solutions and experimental observations. The main aim is to examine the effectiveness of a tsunami-resistant house design by predicting the wave loads on it. To achieve this, the solitary wave generation and run-up are studied first. The solitary wave is generated by allowing a heavily weighted block to penetrate into a tank of water at one end, and the near-shore seabed is modelled by an inclined section with a constant slope. Then, the SPH model is applied to simulate the three-dimensional flows around different types of houses under the action of a solitary wave. It has been found that the tsunami-resistant house design reduces the impact force by a factor of three. 相似文献
102.
Hyperspectral satellite data analysis for pure pixels extraction and evaluation of advanced classifier algorithms for LULC classification 总被引:1,自引:0,他引:1
Gopal Krishna Rabi N. Sahoo Sanatan Pradhan Tauqueer Ahmad Prachi M. Sahoo 《Earth Science Informatics》2018,11(2):159-170
The study was carried out for Indian capital city Delhi using Hyperion sensor onboard EO-1 satellite of NASA. After MODTRAN-4 based atmospheric correction, MNF, PPI and n-D visualizer were applied and endmembers of 11 LCLU classes were derived which were employed in classification of LULC. To incur better classification accuracy, a comparative study was also carried out to evaluate the potential of three classifier algorithms namely Random Forest (RF), Support Vector Machines (SVM) and Spectral Angle Mapper (SAM). The results of this study reemphasize the utility of satellite borne hyperspectral data to extract endmembers and also to delineate the potential of random forest as expert classifier to assess land cover with higher classification accuracy that outperformed the SVM by 19% and SAM by 27% in overall accuracy. This research work contributes positively to the issue of land cover classification through exploration of hyperspectral endmembers. The comparison of classification algorithms’ performance is valuable for decision makers to choose better classifier for more accurate information extraction. 相似文献
103.
Soil and water conservation measures improve soil carbon sequestration and soil quality under cashews 总被引:1,自引:1,他引:1
Gopal Ramdas Mahajan Bappa Das Sandrasekaran Manivannan Begur Lakshminarasimha Manjunath Ram Ratan Verma Sujeet Desai Rahul Mukund Kulkarni Ashish Marotrao Latare Reshma Sale Dayesh Murgaonkar Kiran Puna Patel Shaiesh Morajkar Ashwini Desai Natasha Barnes Heena Mulla 《国际泥沙研究》2021,36(2):190-206
Land degradation is becoming a serious problem in the west coast region of India where one of the world's eight biodiversity hotspots,the‘Western Ghats’,is present.Poor land management practices and high rainfall have led to increasing problems associated with land degradation.A long-term(13-year)experiment was done to evaluate the impact of soil and water conservation measures on soil carbon sequestration and soil quality at three different depths under cashew nut cultivation on a 19%slope.Five soil and water conservation measures-continuous contour trenches,staggered contour trenches,halfmoon terraces,semi-elliptical trenches,and graded trenches all with vegetative barriers of Stylosanthes scabra and Vetiveria zizanoides and control were evaluated for their influence on soil properties,carbon sequestration,and soil quality under cashews.The soil and water conservation measures improved significantly the soil organic carbon,soil organic carbon stock,carbon sequestration rate and microbial activity compared to the control condition(without any measures).Among the measures tested,continuous contour trenches with vegetative barriers outperformed the others with respect to soil organic carbon stock,sequestration rate,and microbial activity.The lower metabolic quotient with the measures compared to the control indicated alleviation of environmental stress on microbes.Using principal component analysis and a correlation matrix,a minimum dataset was identified as the soil available nitrogen,bulk density,basal soil respiration,soil pH,acid phosphatase activity,and soil available boron and these were the most important soil properties controlling the soil quality.Four soil quality indices using two summation methods(additive and weighted)and two scoring methods(linear and non-linear)were developed using the minimum dataset.A linear weighted soil quality index was able to statistically differentiate the effect of soil and water conservation measures from that of the control.The highest value of the soil quality index of 0.98 was achieved with continuous contour trenches with a vegetative barrier.The results of the study indicate that soil and water conservation measures for cashews are a potential strategy to improve the soil carbon sequestration and soil quality along with improving crop productivity and reducing the erosion losses. 相似文献
104.
Philip K. Thornton Peter G. Jones Gopal Alagarswamy Jeff Andresen 《Global Environmental Change》2009,19(1):54-65
There is general consensus that the impacts of climate change on agriculture will add significantly to the development challenges of ensuring food security and reducing poverty, particularly in Africa. While these changes will influence agriculture at a broad scale, regional or country-level assessments can miss critical detail. We use high-resolution methods to generate characteristic daily weather data for a combination of different future emission scenarios and climate models to drive detailed simulation models of the maize and bean crops. For the East African region, there is considerable spatial and temporal variation in this crop response. We evaluate the response of maize and beans to a changing climate, as a prelude to detailed targeting of options that can help smallholder households adapt. The results argue strongly against the idea of large, spatially contiguous development domains for identifying and implementing adaptation options, particularly in regions with large variations in topography and current average temperatures. Rather, they underline the importance of localised, community-based efforts to increase local adaptive capacity, take advantage of changes that may lead to increased crop and livestock productivity where this is possible, and to buffer the situations where increased stresses are likely. 相似文献
105.
106.
Himalayan region represents the highest and most diverse treeline over the world. As one of the most conspicuous boundaries between montane forests and alpine vegetation, the alpine timberline attracted the interest of researchers for many decades. However, timberline in the Himalayas is understudied compared with European counterparts due to remoteness. Here we review the distribution pattern of timberline and its climatic condition, the carbon and nutrient supply mechanism for treeline formation, and treeline shift and treeline tree recruitment under climate change scenarios. Growth limitation, rather than carbon source limitation is the physiological cause of timberline under the low temperature condition. Nutrient limitation and water stress are not the direct cause of timberline formation. However, more clear local limitation factors are need to integrate in order to enable us to predict the potential impacts and changes caused by human activity and related global change in this sensitive region. 相似文献
107.
Four classical geomechanics problems involving semi-infinite linear elastic media have been solved numerically using recently developed mapped infinite elements coupled to finite elements.The effect of the remoteness of the truncated boundary and the location of infinite element coupling on solution accuracy has been studied. The results of conventional analyses using finite elements over a relatively large but restricted region are compared to the coupled analyses. Comparison of the results shows that for the same number of degrees of freedom the performance of the coupled solutions is superior to the conventional approach with respect to accuracy of solution and computational efficiency. Finally, some general guidelines are proposed for the efficient numerical solution of these types of problems using the coupled finite/infinite element approach. 相似文献
108.