首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
大气科学   7篇
地球物理   14篇
地质学   11篇
海洋学   2篇
天文学   6篇
自然地理   4篇
  2021年   1篇
  2020年   1篇
  2015年   2篇
  2013年   1篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2001年   2篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1994年   3篇
  1993年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1968年   1篇
排序方式: 共有44条查询结果,搜索用时 109 毫秒
21.
A model is presented to explain the highly variable yet low level of Langmuir waves measured in situ by spacecraft when electron beams associated with type III solar bursts are passing by; the low level of excited waves allows the propagation of such streams from the Sun to well past 1 AU without catastrophic energy losses. The model is based, first, on the existence of large-scale density fluctuations that are able to efficiently diffuse small-k beam-unstable Langmuir waves in phase space, and, second, on the presence of a significant isotropic non-thermal tail in the distribution function of the background electron population, which is capable of stabilizing larger k modes. The strength of the model lies in its ability to predict various levels of Langmuir waves depending on the parameters. This feature is consistent with the high variability actually observed in the measurements. The calculations indicate that, for realistic parameters, the most unstable, small k modes are fully stabilized while some oblique mode with higher k and lower growth rate might remain unstable; thus a very broad range of levels of Langmuir waves is possible from levels of the order of enhanced spontaneous emission to the threshold level for nonlinear processes. On the other hand, from in situ measurements of the density fluctuations spectrum by ISEE-1 and 2 in the vicinity of the Earth, it is shown that measured 100 km scale fluctuations may be too effective in quenching the instability. If such strong density fluctuations are common in the solar wind, we show they must be highly anisotropic in order to allow the build-up of Langmuir waves to the observed mV m–1 range. Moreover, the anisotropy must be such that the strongest variations of density occur in a plane perpendicular to the magnetic field.  相似文献   
22.
The solution for the half-space model is represented directly in the time domain as computationally stable convolution integrals. The influence of the geoelectric parameters of the earth and transmitter current waveform are then investigated for both infinitesimal and finite-dimensional transmitter loops. Simple empirical formulae are derived to account for the finite duration of the transmitter current turn off time.The whole transient process is divided into three essentially different stages: the propagation stage, the intermediate stage and the diffusion stage. The first is characterized by extremely complicated signal behavior. Apparently, interpretation of the field data using any kind of model fitting inversion algorithm is impossible in this stage. The diffusion stage virtually coincides with that used in the quasi-static case and is, therefore, unsuitable for detecting the dielectric properties of the earth. The intermediate stage is, thus, the only possible time range in which the dielectric properties can be detected using the dynamic characteristics of the signal.The duration of each stage is evaluated depending on the geoelectric parameters of the earth for different transmitter current waveforms.  相似文献   
23.
Understanding, using, or eliminating three-dimensional (3-D) effects in electromagnetic methods of geophysics are critical requirements. Numerous achievements in 3-D modeling sometimes give the impression that they are widely available today in geophysical practice. This is not necessarily true. Existing 3-D modeling packages prove that we know how to perform 3-D modeling. However, the computer resources and costs involved make the practical application of 3-D EM modeling in geophysical applications very limited.A practical compromise, or even alternative, is represented by 2.5-D modeling characterized by the use of a 3-D source in a 2-D medium. This combination allows one to mathematically describe the related boundary value problem as a sequence of independent two-dimensional problems. The typical technique leading to such a split formulation is Fourier analysis. That is why the individual terms of a split solution are often referred to as harmonics.Although each independent problem is two-dimensional, the algorithmic implementation of finite differences or integral equations for the higher harmonics has some specific features not present in the classical 2-D cases. In this paper, a hybrid scheme consisting of a combination of the finite difference technique with the integral equation approach for transient fields is described. Evaluation of algorithm accuracy is presented and a transient logging technique application is considered. The algorithm is fast and easily implemented on a personal computer  相似文献   
24.
 High radon fluxes in the seismically active Dead Sea Rift seem to be affected by the hydrological system and the different salinities of groundwater bodies involved. The time domain electromagnetic (TDEM) method was employed to delineate those different bodies and the configuration of the interfaces between them. The present hydrological system and the related brines and interfaces are controlled by the Dead Sea base level, presently at 408 m below MSL. TDEM measurements detect low resistivity (<1 ohm/m) units representing brines and the interface between them as well as the overlying fresher water bodies. In addition, high resistivity (freshwater) units are also detected, underlying the brines, related herein to a multiple hydrological system. Low-resistivity brines, detected above the present base level, are interpreted herein as yet unflushed ones which correspond to a former higher base level. Higher sequences, below historical (sixteenth century) base levels, are already devoid of brines, which gives an indication as to the rate of flushing. Received: 3 June 1996 / Accepted: 23 July 1996  相似文献   
25.
The efficacy of in‐stream nephelometric turbidometry as a surrogate for total suspended solids (TSS) and total phosphorus (TP) concentrations was evaluated for use in low turbidity (<50 NTU) subalpine watersheds at Lake Tahoe, California–Nevada, USA. Continuous turbidity records for the 1999, 2000 and 2001 snowmelt seasons and data from water quality samples (1982–2000) were examined to determine watershed sediment delivery dynamics. Strong correlations were found between turbidity and both TSS and TP concentration. The strong correlation indicates that turbidity can serve as a good surrogate for direct measurement in these watersheds. The watersheds displayed clockwise hysteresis: sediment flushing and depletion, on daily, seasonal and decadal time‐scales. The hysteresis curves had strong concave shapes, indicating a sensitive response to peak flow. A pronounced seasonal trend was observed for the ratio of suspended sediment concentration (SSC)/discharge over time, indicating early season flushing of available sediment. Significant linear relationships (p < 0·05) were found for 12 of 17 years. Comparison of annual sediment rating curve coefficients indicated smaller coefficients during high sediment loading years and in the years following. The smaller coefficients are evidence of sediment depletion during high flow years. The effect of hysteresis on monitoring methods was illustrated by comparing turbidity estimates of TSS load with sediment rating curve estimates of SSC. After accounting for differences in SSC/TSS methods of analysis, daily loads calculated with turbidity methods were 58–98% of rating curve estimates for the spring snowmelt seasons of 1999–2001. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
26.
27.
    
  相似文献   
28.
Preface     
  相似文献   
29.
Correlation of geophysical data collected using the NMR method in the Negev Desert, Israel, with hydrogeological data from nearby observation wells is presented. The experiment was conducted near Kibbutz Revivim in the Besor drainage system (Fig. 1). The objective of the survey was to detect groundwater layers in the Quaternary cover filling and Eocene fractured aquifers down to a depth of 100 m. The experiment was performed using a combination of two different geophysical techniques, namely the NMR and time domain electromagnetic (TDEM) methods. The geophysical results were verified by measuring the water level in three observation wells, two of which were drilled several months after the geophysical survey was carried out.The water level measured in these follow-up observation wells shortly after drilling did not coincide with the geophysical data. However, it settled over a period of time and finally stabilized at a depth very similar to that obtained from the NMR measurements. This phenomenon is caused by the fractured nature of the phreatic aquifer. Since the flow of water in such aquifers is confined by the fractures, the appearance of water in the well during or shortly after drilling is determined solely by the intersection of the well and the fracture. Our experiments showed that geophysical measurements in fractured phreatic aquifers may have a distinct advantage over direct borehole measurements, since the former average the depth to the water table over large areas (several thousand square meters) while the latter are limited by the area of the borehole cross-section (several tens of square centimeters).  相似文献   
30.
All of the techniques used to measure stratospheric HCl during the two BIC campaigns involved high resolution infrared spectroscopy. The balloon-borne instruments included five different spectrometers, three operating in the solar absorption mode and two in emission (at distinctly different wavelengths). Ground-based and aircraft correlative measurements were made close to the balloon locations, again by near-infrared spectroscopy.Within this set of results, comparisons between different techniques (absorption vs emission) viewing the same airmass (i.e., on the same gondola) were possible, as were comparisons between the same technique used on different gondolas spaced closely in time and location. The final results yield a mean profile of concentration of HC1 between 18 and 40 km altitude; an envelope of ±15% centered on this profile encompasses all of the results within one standard deviation of their individual mean values. The absolute accuracy of the final profile is estimated to be no worse than 10%. It is concluded also that the measurement techniques for HCl have reached a level of performance where a precision of 10% to 15% can be confidently expected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号