首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   14篇
  国内免费   1篇
测绘学   3篇
大气科学   14篇
地球物理   72篇
地质学   105篇
海洋学   47篇
天文学   33篇
综合类   2篇
自然地理   14篇
  2023年   2篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   8篇
  2017年   8篇
  2016年   12篇
  2015年   8篇
  2014年   10篇
  2013年   15篇
  2012年   8篇
  2011年   13篇
  2010年   16篇
  2009年   17篇
  2008年   13篇
  2007年   15篇
  2006年   9篇
  2005年   12篇
  2004年   7篇
  2003年   16篇
  2002年   10篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   6篇
  1997年   7篇
  1996年   2篇
  1995年   2篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1989年   3篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1985年   2篇
  1980年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   4篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1967年   1篇
  1963年   1篇
  1955年   2篇
  1944年   1篇
排序方式: 共有290条查询结果,搜索用时 15 毫秒
251.
The effects on the = 2 geoid component and Earth's rotation due to internal mass anomalies are analyzed for a stratified viscoelastic mantle described by a Maxwell rheology. Our approach is appropriate for a simplified modeling of subduction. Sea-level fluctuations induced by long-term rotational instabilities are also considered. The displacement of the Earth's axis of rotation, called true polar wander (TPW) and the induced eustatic sea-level fluctuations, are extremely sensitive to viscosity and density stratification at the 670 km seismic discontinuity. Phase-change models for the transition zone generally allow for huge amount of TPW, except for large viscosity increases; the dominant contribution in Liouville equations comes from a secular term that reflects the viscous behaviour of the mantle. In chemically stratified models, TPW is drastically reduced due to dynamic compensation of the mass anomalies at the upper-lower mantle interface. When the source is embedded in the upper mantle close to the chemical density jump, transient rotational modes are the leading terms in the linear Liouville equations. Long-term rotation instabilities are valuable contributors to the third order cycles in the eustatic sea-level curves. Rates of sea-level fluctuations of the order of 0.05–0.1 mm/yr are induced by displacements of the Earth's axis of rotation compatible with paleomagnetic data.  相似文献   
252.
Major earthquakes (i.e., mainshocks) typically trigger a sequence of lower magnitude events clustered both in time and space. Recent advances of seismic hazard analysis stochastically model aftershock occurrence (given the main event) as a nonhomogeneous Poisson process with rate that decays in time as a negative power law. Risk management in the post‐event emergency phase has to deal with this short‐term seismicity. In fact, because the structural systems of interest might have suffered some damage in the mainshock, possibly worsened by damaging aftershocks, the failure risk may be large until the intensity of the sequence reduces or the structure is repaired. At the state‐of‐the‐art, the quantitative assessment of aftershock risk is aimed at building tagging, that is, to regulate occupancy. The study, on the basis of age‐dependent stochastic processes, derived closed‐form approximations for the aftershock reliability of simple nonevolutionary elastic‐perfectly‐plastic damage‐cumulating systems, conditional on different information about the structure. Results show that, in the case hypotheses apply, the developed models may represent a basis for handy tools enabling risk‐informed tagging by stakeholders and decision makers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
253.
Abstract. The detritus rolling down a vertical cliff was studied at Portofino Promontory (Ligurian Sea, Italy) at 16 m depth (January 1988- January 1989). The large amount of collected sediment is mainly due to the position of the traps; they collected not only the sedimenting material, but also the detritus rolling down along the cliff. The amount of sediment matter is 7 times greater in winter than in summer, showing a good correlation with rough seas and rain that cause a "mechanical cleaning" of animal and plant debris (Sérpulid tubes, shells, exuvias. leaves) along the cliff.
The Total Suspended Matter (TSM) in the water column shows maximum values in March and September. The organic fraction has an average concentration of 0.81 mg 1-l. The phytoplanktonic biomass, measured as Chi a , shows an annual cycle with a peak in spring (1–2.7μg·l-1). while in other periods of the year the value is about 0.3-0.5 μg·1-1. A significant relationship was found between organic detritus in the collected sédiments and the Chi a in the water column. The great influence of the rocky wall detritus on the normal trend of the TSM in the coastal water column is pointed out.  相似文献   
254.
Tectonic pseudotachylytes might be used to constrain earthquake source parameters, such as dynamic shear stress resistance, average dynamic friction and slip-weakening distance. Estimation of dynamic shear stress resistance and dynamic friction from field studies is based on the assumption that the volume of melt produced during coseismic slip is proportional to the frictional work converted to heat on the fault surface. Conditions conducive to a realistic estimate of dynamic shear resistance are: (i) the presence of large outcrop exposures that allow for estimation of the volume of pseudotachylyte; (ii) the presence of structural markers offset by faults in order to relate the displacement accommodated by the fault with the volume of melt produced; (iii) data that provide an estimate of the initial melt temperature; and (iv) determination of host-rock temperature and pressure conditions that may have existed during seismic faulting. An independent indication that steady-state friction in the presence of melts might be achieved during coseismic slip arises from the dependence of the fractal dimension of the fault profile (intersection of the fault surface with the outcrop surface) with displacement. This relation could also indicate the slip-weakening distance (Hirose, T., Shimamoto, T., 2003. Fractal dimension of molten surfaces as a possible parameter to infer the slip-weakening distance of faults from natural pseudotachylytes. Journal of Structural Geology 25, 1569–1574).The above conditions are all satisfied in the case of the Gole Larghe Fault Zone, which consists of hundreds subparallel strike-slip faults that cut tonalites of the Adamello batholith (Italy). The thickness of pseudotachylyte-bearing faults increases with displacement. From displacement/thickness ratios and energy balance calculations, we determined the dynamic shear resistance for several pseudotachylyte-bearing faults. In the same faults, the fractal dimension of the fault profile increases from 1.0 to 1.16 with displacement. This was also observed in experiments where steady-state friction in the presence of melt was achieved (Hirose, T., Shimamoto, T., 2003. Fractal dimension of molten surfaces as a possible parameter to infer the slip-weakening distance of faults from natural pseudotachylytes. Journal of Structural Geology 25, 1569–1574). However, we will show that the estimate of the dynamic shear stress resistance, average dynamic friction and slip-weakening distance in the studied faults is limited by the uncertainties to attribute the measured displacement to a single seismic rupture. Since many pseudotachylytes in the upper seismogenic crust overprint preexisting cataclasites, it is suggested that future field and experimental work should be addressed to determine microstructural indicators (i.e. evolution of cataclastic fabric with displacement) within cataclasites, which might constrain the contribution of the cataclastic, pre-pseudotachylyte displacement to the total displacement accommodated by the fault.  相似文献   
255.
256.
The Periadriatic foredeep (Italy) was generated by Neogene downbending of the Adria Plate under the Apennine Chain. The basin is filled with Plio-Pleistocene siliciclastic turbidites. Its substratum consists of the carbonate succession of the southwestern Adria Plate margin. The influence of the basin’s morphology on sedimentation and subsequent tectonic evolution is investigated in the Abruzzo sector of the foredeep (Cellino Basin). The substratum is composed of Messinian evaporites that dip towards the Apennines (W). A NNW component along the depocentral axis is divided into four blocks with different depths. The substratum was also affected by a Messinian extensional fault system, not involving the overlying Pliocene sequence. This morphology controlled the distribution of the turbidites in the lower part of the Cellino Basin. The Plio-Pleistocene compressional deformation of the foredeep produced an inner complex structure (Internal Structure), involving the foredeep substratum and an outer imbricate thrust system (Coastal Structure), detached over the faulted Messinian evaporites. This thrust system is parallel to the extensional faults, suggesting a strong influence of the substratum morphology on the development of the compressional structures. The overall structural setting was validated with a balanced cross-section. Out-of-sequence thrusting and non-coeval deformation within each thrust sheet characterize the local tectonic history.  相似文献   
257.
In this paper, a fully coupled 2‐dimensional poroelastic displacement discontinuity method is used to investigate the refracturing process in horizontal wells. One of the objectives of refracturing is to access new reserves by adding new hydraulic fractures in zones that were bypassed in the initial fracturing attempt. Pore pressure depletion in the vicinity of old fractures directly affects the state of stress and eventually the propagation of newly created hydraulic fractures. Thus, a poroelastic analysis is required to identify guidelines for the refracturing process, in particular to understand the extension of the pore pressure depletion, and eventually, the orientation of new as well as old fractures. We propose a fully coupled approach to model the whole process of child fracture propagation in a depleted area between 2 parent fractures in the same wellbore. This approach omits the need of using multistep workflow that is regularly used to model the process. The maximum tensile stress criterion (σ criterion) is used for hydraulic fracture propagation. The proposed method is verified using available analytical solutions for total stress and pore pressure loading modes on a line fracture in drained and undrained conditions. Then, test cases of multifractured horizontal wells are studied to calculate the time evolution of the stress and pore pressure fields around old fractures and to understand the effect of these fields on the propagation path of newly created fractures. Finally, the effect of the pore pressure depletion on the propagation path of the newly created fractures in the bypassed area of the same wellbore is studied. The results show that the depleted areas around old fractures are highly affected by the extent and severity of the stress redistribution and pore pressure depletion. It is observed that a successful creation of new fractures may only happen in certain time frames. The results of this study provide new insights on the behavior of newly created fractures in depleted zones. They also clarify the relationship between stress change and pore pressure depletion in horizontal wells.  相似文献   
258.
Westward drift of the lithosphere: not a result of rotational drag   总被引:2,自引:0,他引:2  
It is shown that any non-zero torque resulting from differences in angular velocity between individual shells in the Earth would be an extremely short transient phenomenon as a consequence of the viscosity of the asthenosphere. Consequently, it cannot be a factor in the origin of the toroidal velocity field of degree one ('westward drift') of the lithosphere.  相似文献   
259.
260.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号