首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   18篇
  国内免费   1篇
测绘学   12篇
大气科学   44篇
地球物理   70篇
地质学   137篇
海洋学   35篇
天文学   37篇
综合类   1篇
自然地理   44篇
  2021年   7篇
  2020年   5篇
  2019年   4篇
  2018年   6篇
  2017年   5篇
  2016年   8篇
  2015年   9篇
  2014年   17篇
  2013年   15篇
  2012年   11篇
  2011年   17篇
  2010年   15篇
  2009年   20篇
  2008年   13篇
  2007年   21篇
  2006年   14篇
  2005年   15篇
  2004年   8篇
  2003年   14篇
  2002年   13篇
  2001年   6篇
  2000年   15篇
  1999年   5篇
  1998年   7篇
  1997年   11篇
  1996年   3篇
  1995年   8篇
  1994年   8篇
  1993年   6篇
  1992年   7篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1981年   4篇
  1980年   6篇
  1979年   9篇
  1978年   5篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   5篇
  1972年   1篇
  1897年   1篇
排序方式: 共有380条查询结果,搜索用时 406 毫秒
71.
Population growth along the southeastern United States coast has precipitated the conversion of forested watersheds to suburban and urban ones. This study sampled creeks representing forested, suburban, and urban watersheds along a longitudinal gradient for indicators of water quality, including traditional indicator bacteria (fecal coliforms and enterococci) and alternative viral indicators (male-specific and somatic coliphages). Tested microorganisms were generally distributed with highest concentrations in creek headwaters and in more developed watersheds. The headwaters also showed the strongest predictive relationship between indicator concentrations and urbanization as measured by impervious cover. A seasonal pattern was observed for indicator bacteria but not for indicator viruses. Coliphage typing indicated the likely source of contamination was nonhuman. Results suggest that headwater creeks can serve as sentinel habitat, signaling early warning of public health concerns from land-based anthropogenic activities. This study also implies the potential to eventually forecast indicator concentrations under land use change scenarios.  相似文献   
72.
The role of wood as a driver of landform development appears to have been overlooked in the interpretation of palaeo‐landscape change along river corridors. Deforested river corridors and wood‐free rivers characterize ‘modern’, managed landscapes, but along natural river corridors both driftwood dynamics and tree reproductive strategies can have a dramatic impact on the style and rate of channel and floodplain development. Therefore, we believe that interpretations of the post‐glacial history of river valleys across the northern temperate climatic zone could be usefully reassessed, incorporating the roles of riparian trees. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
73.
Extensive mud deposits superimposed on the predominantly sandy inner continental shelf adjacent to the Patos Lagoon estuary, indicates that the Lagoon is a potential source of fine sediments to the coastal sedimentary system. The lagoon is large and shallow, and the water movement is mainly controlled by wind-driven set-up and set-down. The mean river inflow is around 2000 m3 s−1, although peak flow rates exceeding 20,000 m3 s−1 have been observed during El Niño periods. Though the tidal elevations are small, tidal velocities in the lagoon's inlet can be significant due to the large extension of the backwaters. Moreover, significant exchange flows can be generated between the estuary and coastal area due to barotropic pressure gradients established as a function of wind and freshwater discharge. The predominant net flow is seawards, but opposite near-bed flows due to pronounced vertical salinity stratification can also be observed. The coastal area is characterized by small tidal effects, large scale ocean circulation, wind-induced residual flows and wave-driven currents, where the waves originate from swell or are locally generated.  相似文献   
74.
Mud deposits near sandy beaches, found throughout the world, are of scientific and societal interest as they form important natural sea defenses by efficiently damping storm waves. A multi-national field experiment to study these phenomena was performed offshore Cassino beach in southern Brazil starting in 2004. This experiment aimed to investigate the formation of an offshore mud deposit, to characterize wave attenuation over potentially mobile muddy bottoms, and to evaluate the performance of models for wave transformation over heterogeneous beds through the measurement of water waves, near-bottom currents, bathymetry, and changes in bottom sediment characteristics. The main instrumentation was a set of wave sensors deployed in a transect from the shoreline across sandy and muddy deposits offshore to a depth of 25 m. Additional sensors, including current meters and optical backscatter sensors, were concentrated at stations in the middle of the mud deposit and in the surf zone to document aspects of the wave boundary layer and lutocline dynamics. This fieldwork also involved the geological and geotechnical characterization of the mud deposit using seismic equipment, echo-sounders, cores, surficial sampling and an in-situ density meter. These sediment samples were subsequently analyzed for density, grain size distribution, mineralogy, rheology and sedimentary structures. In addition, video and radar monitoring equipment were installed to measure the long-term aspects of surf zone damping by fluid mud and any associated morphodynamic responses. This paper provides a summary of environmental conditions monitored during the experiment and describes the major findings of the various investigations. Although data collection was more difficult than anticipated and dramatic wave attenuation involving the onshore transport of fluid mud into the surf zone region was not observed during the instrumented interval, the new methodologies developed and comprehensive observations obtained during this effort are being used to improve our understanding of shoaling wave dynamics and sediment transport in the coastal zone in regions with significant cohesive sediment deposits.  相似文献   
75.
This study examined the effects of watershed development on macrobenthic communities in tidal creeks of Charleston Harbor, South Carolina, U.S. Two types of creeks were evaluated: upland creeks which drained watersheds consisting of at least 15% terrestrial land cover, and salt marsh creeks which drained no upland habitat (i.e., only intertidal habitat). Samples of macrobenthic organisms were taken along the longitudinal axis of twenty-three primary (first order) tidal creeks. Water and sediment quality data were also collected including measurements of dissolved oxygen, salinity, temperature, sediment characteristics, and toxic chemicals in the creek sediments. Hypoxic conditions occurred more than 15% of the time in both reference and developed creeks and were a natural attribute of these systems. The most severe and frequent hypoxia occurred in impacted salt marsh creeks. Salinity fluctuations were the greatest in developed upland creeks and salinity range was identified as a potentially reliable indicator of the degree to which watershed development has altered hydrodynamic processes. The creeks draining urban and industrial watersheds were degraded environments characterized by watersheds with high (>50%) levels of impervious surface, broad fluctuations in salinity, severe hypoxia, and potentially toxic levels of chemicals in the sediment. These creeks had low macrobenthic diversity and abundance and were numerically dominated by the oligochaeteMonopylephorus rubroniveus in mud sediments, and the polychaeteLaeoreis culveri in sand sediments. Suburban watersheds had 15–35% impervious surface and creeks draining them were exposed to frequent hypoxia and broad salinity fluctuations. The levels of chemical contaminants in sediments of suburban and impacted salt marsh creeks were generally not different from the levels in reference creeks. Macrobenthic diversity and abundance were higher for suburban and impacted salt marsh creeks than for urban and industrial creeks. However, suburban and salt marsh impacted creeks were numerically dominated by a few pollution indicative species including the oligochaetesM. rubroniveus andTubificoides brownae and the polychaeteL. culveri. These creeks appear to be exhibiting early signs of degradation (e.g., a simplified food web). Two promising community-level macrobenthic metrics for assessing environmental quality were identified: the proportional abundance of pollution indicative taxa, and the proportional abundance of pollution sensitive taxa. These indicators were significantly (p<0.05) correlated with the salinity range, the level of chemical contaminants in sediments, and amount of impervious surface in the watershed.  相似文献   
76.
A membership catalogue for Praesepe was compiled and split into four mass bins. A contour plot indicates the presence of a subcluster some 3 pc from the centre of the cluster, of approximately 30 M. A tidally truncated King profile was fitted to the remainder of the cluster and the tidal radius is found to be 12.1 pc; the mass of the cluster (excluding the subcluster) is 630 M. From the calculated velocity dispersions we find that the cluster appears to have too much kinetic energy and should be rapidly disintegrating. X-ray data suggest that there may be an age spread between the main core stars and the subcluster stars. This leads us to the conclusion that Praesepe is two merging clusters.  相似文献   
77.
Banded iron formations (BIF) are prominent in sediments older than 2 Ga. However, little is known about the absolute abundance of BIF in Archean and Early Proterozoic sediments, and the source of the Fe is still somewhat uncertain. Also unknown is the role that Fe may have played in the maintenance of low oxygen pressures in the Archean and Early Proterozoic atmosphere. An analysis of the chemical composition of Precambrian rocks provides some insight into the role of Fe in Precambrian geochemical cycles. The Fe content of igneous rocks is well correlated with their Ti content. Plots of Fe vs. Ti in Precambrian sandstones and graywackes fall very close to the igneous rock trend. Plots of Fe vs. Ti in Precambrian shales also follow this trend but show a definite scatter toward an excess of Fe. Phanerozoic shales and sandstones lie essentially on the igneous rock trend and show surprisingly little scatter. Mn/Ti relations show a stronger indication of Precambrian Mn loss, perhaps due to weathering under a less oxidizing early atmosphere. These data show that Fe was neither substantially added to nor significantly redistributed in Archean and early Proterozoic sediments. Enough hydrothermal Fe was added to these sediments to increase the average Fe content of shales by at most a factor of 2. This enrichment would probably not have greatly affected the near-surface redox cycle or atmospheric oxygen levels. Continued redistribution of Fe and mixing with weathered igneous rocks during the recycling of Precambrian sediments account for the excellent correlation of Fe with Ti in Phanerozoic shales and for the similarity between their Fe/Ti ratio and that of igneous rocks.  相似文献   
78.
Changes in Arctic clouds during intervals of rapid sea ice loss   总被引:2,自引:0,他引:2  
We investigate the behavior of clouds during rapid sea ice loss events (RILEs) in the Arctic, as simulated by multiple ensemble projections of the 21st century in the Community Climate System Model (CCSM3). Trends in cloud properties and sea ice coverage during RILEs are compared with their secular trends between 2000 and 2049 during summer, autumn, and winter. The results suggest that clouds promote abrupt Arctic climate change during RILEs through increased (decreased) cloudiness in autumn (summer) relative to the changes over the first half of the 21st century. The trends in cloud characteristics (cloud amount, water content, and radiative forcing) during RILEs are most strongly and consistently an amplifying effect during autumn, the season in which RILEs account for the majority of the secular trends. The total cloud trends in every season are primarily due to low clouds, which show a more robust response than middle and high clouds across RILEs. Lead-lag correlations of monthly sea ice concentration and cloud cover during autumn reveal that the relationship between less ice and more clouds is enhanced during RILEs, but there is no evidence that either variable is leading the other. Given that Arctic cloud projections in CCSM3 are similar to those from other state-of-the-art GCMs and that observations show increased autumn cloudiness associated with the extreme 2007 and 2008 sea ice minima, this study suggests that the rapidly declining Arctic sea ice will be accentuated by changes in polar clouds.  相似文献   
79.
Northern Hemisphere summer cooling through the Holocene is largely driven by the steady decrease in summer insolation tied to the precession of the equinoxes. However, centennial-scale climate departures, such as the Little Ice Age, must be caused by other forcings, most likely explosive volcanism and changes in solar irradiance. Stratospheric volcanic aerosols have the stronger forcing, but their short residence time likely precludes a lasting climate impact from a single eruption. Decadally paced explosive volcanism may produce a greater climate impact because the long response time of ocean surface waters allows for a cumulative decrease in sea-surface temperatures that exceeds that of any single eruption. Here we use a global climate model to evaluate the potential long-term climate impacts from four decadally paced large tropical eruptions. Direct forcing results in a rapid expansion of Arctic Ocean sea ice that persists throughout the eruption period. The expanded sea ice increases the flux of sea ice exported to the northern North Atlantic long enough that it reduces the convective warming of surface waters in the subpolar North Atlantic. In two of our four simulations the cooler surface waters being advected into the Arctic Ocean reduced the rate of basal sea-ice melt in the Atlantic sector of the Arctic Ocean, allowing sea ice to remain in an expanded state for?>?100 model years after volcanic aerosols were removed from the stratosphere. In these simulations the coupled sea ice-ocean mechanism maintains the strong positive feedbacks of an expanded Arctic Ocean sea ice cover, allowing the initial cooling related to the direct effect of volcanic aerosols to be perpetuated, potentially resulting in a centennial-scale or longer change of state in Arctic climate. The fact that the sea ice-ocean mechanism was not established in two of our four simulations suggests that a long-term sea ice response to volcanic forcing is sensitive to the stability of the seawater column, wind, and ocean currents in the North Atlantic during the eruptions.  相似文献   
80.
Scale interaction in the Western Pacific Monsoon   总被引:9,自引:1,他引:9  
Summary The lower-tropospheric scale interactions occurring in the summer monsoon of the western North Pacific are reviewed and summarised in a conceptual model. Diabatic heating produces a circulation with similar characteristics to those that are observed. In the lower troposphere the advection of vorticity by the divergent wind produces a compact, and more intense response than in the upper levels. Subsequent phase dispersion westward, and group propagation eastwards, lead to a monsoon depression in convectively suppressed conditions, a westerly jet with cross-equatorial flow, and a strong confluence region to the east of the monsoon depression.I suggest that this confluence zone traps tropical waves in the mid-lower troposphere in a similar manner to the accumulation and emanation mechanisms described by Chang and Webster. The details of the convection in the confluence zone are of little direct consequence to the monsoon circulation, which is similar in scale to the deformation radius for the undisturbed tropics. However, mesoscale convective systems can both self organise into larger coherent structures and produce vortices of horizontal scale 100–200 km, which are long-lived and potentially have considerable indirect influence on both the monsoon and embedded systems, such as tropical cyclones. The confluence zone provides an excellent environment for tropical cyclone formation, which is enhanced by the presence of a previously developed tropical cyclone. Scale-interaction arising from the merger of developing vortices and the large monsoon depression can lead to development of a very large typhoon and rapid breakdown of the total monsoon circulation. The interaction of tropical cyclones with the mid-latitude systems is complex and not well understood, but recurving tropical cyclones may provide a major component of the emanation of energy to higher latitudes.With 16 Figures  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号