首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   6篇
  国内免费   1篇
地球物理   13篇
地质学   5篇
海洋学   10篇
天文学   1篇
自然地理   2篇
  2021年   1篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2012年   1篇
  2009年   1篇
  2008年   3篇
  2005年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1982年   1篇
  1981年   2篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
21.
On the basis of data on the statistical characteristics of individual waves in laboratory wind waves reported in part I of this series, a self-consistent similarity regime is found to exist among properties of the individual waves, such as the nondimensional frequency, the wave number, the phase speed, and the steepness. Also, it is shown that forms of past empirical formulas for the development of the peak wave can be derived starting from the 3/2-power law, as an extension of the persent laboratory experimental data. In the derivation, only values of the coefficient of the 3/2-power law, and the fraction of momentum transferred from the wind retained by the wind waves, remain on an empirical basis.  相似文献   
22.
Detailed observations were performed of the wind-exerted surface flow, before and after the generation of wind waves. As flow visualization techniques, 6 classes of polystyrene beads of from 0.33 mm to 1.93 mm in diameter, with a specific gravity of 0.99, and also, hydrogen bubble lines, were used. Experiments were carried out at three ranges of the wind speed: 4.0, 6.2 and 8.6ms–1 in the mean in the wind-wave tunnel section, and the observations were made at 2.85 m in fetch. In the case of 6.2 m s–1, when the initial surface skin flow attains 0.22 cm in the scale thickness and 16 cm s–1 in the surface velocity in about 3 second from the onset of the wind, regular waves of about 1.7 cm in wave length appear on the water surface. In one second after that, the downward thrust of the surface flow and the consequent forced convection commences, and the transition of the surface layer to a turbulent state occurs. Ordinary wind waves begin to develop from this state. In developed wind waves the viscous skin flow grows on the windward side of the crests, frequently producing macroscopic skin flows, and these skin flows converge to make a downward thrust at the lee side, and the viscous skin layer disappears there. The velocity of the downward flow has a maximum at the phase of about 30, and the value is of the order of 10 cm s–1 at 4-mm depth after the orbital velocity of the sinusoidal wave is subtracted. As the process through which the wind stress acts on the water surface, it is considered that the following particular one may be real: the skin friction concentrated at the windward side of the crest produces skin flows, which thrust into the inner region to make the forced convection, carrying the acquired momentum. The viscous shearing stress just before the generation of the surface undurations was about 1/4 of the total shearing stress under the existence of wind waves. It is considered that the increase of the wind stress by wind waves is caused by this mechanism.  相似文献   
23.
This study is the first integrated geological and geophysical investigation of the Hidaka Collision Zone in southern Central Hokkaido, Japan, which shows complex collision tectonics with a westward vergence. The Hidaka Collision Zone consists of the Idon'nappu Belt (IB), the Poroshiri Ophiolite Belt (POB) and the Hidaka Metamorphic Belt (HMB) with the Hidaka Belt from west to east. The POB (metamorphosed ophiolites) is overthrust by the HMB (steeply eastward-dipping palaeo-arc crust) along the Hidaka Main Thrust (HMT), and in turn, thrusts over the Idon'nappu Belt (melanges) along the Hidaka Western Thrust (HWT). Seismic reflection and gravity surveys along a 20-km-long traverse across the southern Hidaka Mountains revealed hitherto unknown crustal structures of the collision zone such as listric thrusts, back thrusts, frontal thrust-and-fold structures, and duplex structures. The main findings are as follows. (1) The HMT, which dips steeply at the surface, is a listric fault dipping gently at a depth of 7 km beneath the eastern end of the HMB, and cutting across the lithological boundaries and schistosity of the Hidaka metamorphic rocks. (2) A second reflector is detected 1 km below the HMT reflector. The intervening part between these two reflectors is inferred to be the POB, which is only little exposed at the surface. This inference is supported by the high positive Bouguer anomalies along the Hidaka Mountains. (3) The shallow portion of the IB at the front of the collision zone has a number of NNE-dipping reflectors, indicative of imbricated fold-and-thrust structures. (4) Subhorizontal reflectors at a depth of 14 km are recognized intermittently at both sides of the seismic profile. These reflectors may correspond to the velocity boundary (5.9–6.6 km/s) previously obtained from seismic refraction profiling in the northern Hidaka Mountains. (5) These crustal structures as well as the back thrust found in the eastern end of the traverse represent characteristics of collisional tectonics resulting from the two collisional events since the Early Tertiary.  相似文献   
24.
Laboratory measurements for compressional and shear wave velocities (Vp and Vs, respectively) and porosity were conducted with core samples from the Nobeoka Thrust Drilling Project (NOBELL) under controlled effective pressure (5–65 MPa at 5 MPa intervals) and wet conditions. Samples were classified according to deformation texture as phyllite, foliated cataclasite, or non‐foliated cataclasite. Measured values of Vp, Vs, and porosity are within a range of 5.17–5.57 km/s, 2.60–2.71 km/s, and 2.75–3.10 %, respectively, for phyllite; 4.89–5.23 km/s, 2.46–2.57 km/s, and 3.58–4.53 %, respectively, for foliated cataclasite; and 4.90–5.32 km/s, 2.51–2.63 km/s, and 3.79–4.60 %, respectively, for non‐foliated cataclasite, which are all consistent with the previous laboratory experiments conducted with outcrop samples under dry conditions. However, our results also indicate higher Vp and Vs and lower porosity than those measured by the previous studies that adopted the wire‐line logging methods. The variations in Vp, Vs, and porosity are controlled by deformation structure and are greater for phyllite and foliated cataclasite than for non‐foliated cataclasite.  相似文献   
25.
Statistical characteristics of individual waves in laboratory wind waves have been studied by use of a wind-wave tunnel. The individual waves are defined by actual undulations of the water surface at any instant, and are characterized by concentrated shearing stress and strong vorticity at their crests. A conspicuous self-similarity structure is found in the individual wave field. The similarity manifests itself as a simple spectral form, and as the statistical 3/2-power law between nondimensional wave height and wave period, and further as the -1/2-power relationship between nondimensional phase speed and frequency, for waves of the high frequency side. The normalized energy spectrum, specially defined for individual waves, has a form practically equivalent to the traditional spectrum for component waves in the main frequency range from 0.7 to 1.5 in the frequency normalized by the peak frequency, but does not have secondary peaks at harmonics. The phase speed of individual waves also coincides with that of component waves in the main frequency range.  相似文献   
26.
Melt‐origin pseudotachylyte is the most reliable seismogenic fault rock. It is commonly believed that pseudotachylyte generation is rare in the plate subduction zone where interstitial fluids are abundant and can trigger dynamic fault‐weakening mechanisms such as thermal pressurization. Some recent studies, however, have discovered pseudotachylyte‐bearing faults in exhumed ancient accretionary complexes, indicating that frictional melting also occurrs during earthquakes in subduction zones. To clarify the pseudotachylyte generation mechanism and the variation of slip behavior in the plate subduction zone, a pseudotachylyte found in the exhumed fossil accretionary complex (the Shimanto Belt, Nobeoka, Japan) was re‐focused and microscopic and three‐dimensional observations of the pseudotachylyte‐bearing fault were performed based on optical, electron, and X‐ray microscope images. Based on the patterns contained in the fragment, the pseudotachylyte is divided into four domains, although no clear domain boundaries or layering structures are not found. Three‐dimensional observation also suggests that the pseudotachylyte were fragmented or isolated by cataclasite or carbonate breccia. The pseudotachylyte was rather injected into the surrounding carbonate breccia, which is composed of angular fragments of the host rock and a matrix of tiny crystalline carbonate. The pseudotachylyte volume was extracted from the X‐ray microscope image and the heat abundance consumed by the pseudotachylyte generation was estimated at 2.18 MJ/m2, which can be supplied during a slip of approximately 0.5 m. These observations and calculations, together with the results of the previous investigations, suggest hydrofracturing and rapid carbonate precipitation that preceded or accompanied the frictional melting. Dynamic hydrofracturing during a slip can be caused by rapid fluid pressurization, and can induce abrupt decrease in fluid pressure while drastically enhancing the shear strength of the shear zone. Consequently, frictional heating would be reactivated and generate the pseudotachylyte. These deformation processes can explain pseudotachylyte generation in hydrous faults with the impermeable wall rock.  相似文献   
27.
The instability of Taylor-Görtler vortices which are expected in the air flow on water waves was studied in part I, under the assumption that the curvature around the crest or the trough of water waves, where the instability was expected to take place first, was constant, namely that the characteristics of the vortices were affected little by the local change of the curvature along the direction of the progress of water waves (the direction ofx-axis) However, the curvature actually varies from positive to negative, or vice versa. In order to study this effect, the instability of Taylor-Görtler vortices is examined with respect to the range of the part of a constant curvature, in the model in which the curvature is positive constant near the trough and negative constant near the crest, and zero in the intermediate regions, respectively. It is shown that as the region of the constant curvature becomes narrower, the instability tends to weaken. For the same example with part I, namely, when the wind of 12.2 m s–1 is blowing over swells of 15 m in wavelength, if the range of constant curvature near the trough is taken as a quarter of one wave length, the critical wave height becomes 0.96 m instead of 0.50 m, and conversely, the wave length and the height of center of the vortex become 11.9 m and 2.1 m instead of 24 m and 3.7 m, respectively.Further, using the energy equations, quantitative estimates are performed of the intensity of the vortices which develop when the wave height of the swell is 1.05 m in the above described example, and also of the influence of the vortices upon the wind profile when the equilibrium state is reached. When the vortices are generated and grow to attain to an equilibrium state interacting with the mean flow, the maximumx-component of velocity in the vortices is about 1.04 m s–1. Consequently, the wind profile undergoes a considerable distortion from the logarithmic one near the level of 2 m height. This distorted wind profile has a form similar to those sometimes observed above the sea surface.  相似文献   
28.
Wind-wave tunnel experiments reveal, by use of techniques of the flow visualization, that wind waves are accompanied by the wind drift surface current with large velocity shear and with horizontal variation of velocity relative to the wave profile. The surface current converges from the crest to a little leeward face of the crest, making a downward flow there, even though the wave is not breaking. Namely, wind waves are accompanied by forced convections relative to the crests of the waves. Since the location of the convergence and the downward flow travels on the water surface as the crest of the wave propagates, the motion as a whole is characterized by turbulent structure as well as by the nature of water-surface waves. In this meaning, the term of real wind waves is proposed in contrast with ordinary water waves. The study of real wind waves will be essential in future development of the study of wind waves.  相似文献   
29.
A tectonic mélange exposed on land is examined to reveal relationships between mélange formation, underplating, and deformation mechanisms, focusing on the deformation of basaltic rocks. The studied Mugi Mélange of the Shimanto Belt is composed of a shale matrix surrounding various blocks of sandstone, pelagic sediments, and basalts. The mélange was formed during Late Cretaceous to early Tertiary times in a subduction zone under PT conditions of 150–200 °C and 6–7 km depth as estimated from vitrinite reflectance and quartz veins fluid inclusions. The mélange represents a range of deformation mechanisms; pressure solution with micro-scale cataclasis in the shale matrix, brittle tension cracking in the blocks, and ubiquitous strong cataclasis in the basal portion of basaltic layers. The cataclastic deformation in the basalts suggests a breakage of a topographic high in the seismogenic depth.  相似文献   
30.
The Nobeoka Thrust, an ancient megasplay fault in the Shimanto Belt, southwestern Japan, contains fault rocks from the seismogenic zone, providing an accessible analog of active megasplay faults in deep subduction settings. In this study, the paleostress along the Nobeoka Thrust was analyzed using multiple inversion techniques, including k‐means clustering of fault datasets acquired from drillcores that intersected the thrust. The six resultant stress orientation clusters can be divided into two general groups: stress solutions with north–south‐trending σ1 axes, and those with east–west‐trending σ1 axes. These groups are characterized by the temporal changes for the orientations of the σ1 and σ3 principal stress axes that involve alternation between horizontal and vertical. The findings are probably due to a change in stress state before and after earthquakes that occurred on the fault; similar changes have been observed in active tectonic settings, such as the 2011 Tohoku‐Oki earthquake (Japan).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号