首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   363篇
  免费   12篇
  国内免费   4篇
测绘学   6篇
大气科学   64篇
地球物理   94篇
地质学   102篇
海洋学   27篇
天文学   66篇
综合类   3篇
自然地理   17篇
  2024年   2篇
  2023年   2篇
  2022年   8篇
  2021年   9篇
  2020年   11篇
  2019年   8篇
  2018年   8篇
  2017年   16篇
  2016年   25篇
  2015年   20篇
  2014年   6篇
  2013年   21篇
  2012年   21篇
  2011年   16篇
  2010年   18篇
  2009年   18篇
  2008年   23篇
  2007年   8篇
  2006年   17篇
  2005年   17篇
  2004年   9篇
  2003年   7篇
  2002年   6篇
  2001年   3篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1997年   14篇
  1996年   5篇
  1995年   8篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   1篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有379条查询结果,搜索用时 15 毫秒
291.
Ocean Dynamics - The genetic algorithm (GA) model presented here provides specific JONSWAP parameters that can be used for wave modelling. This work describes a validated heuristic model based on...  相似文献   
292.
Wilhelm  K.  Lemaire  P.  Curdt  W.  Schühle  U.  Marsch  E.  Poland  A. I.  Jordan  S. D.  Thomas  R. J.  Hassler  D. M.  Huber  M. C. E.  Vial  J.-C.  Kühne  M.  Siegmund  O. H. W.  Gabriel  A.  Timothy  J. G.  Grewing  M.  Feldman  U.  Hollandt  J.  Brekke  P. 《Solar physics》1997,170(1):75-104
SUMER – the Solar Ultraviolet Measurements of the Emitted Radiation instrument on the Solar and Heliospheric Observatory (SOHO) – observed its first light on January 24, 1996, and subsequently obtained a detailed spectrum with detector B in the wavelength range from 660 to 1490 Å (in first order) inside and above the limb in the north polar coronal hole. Using detector A of the instrument, this range was later extended to 1610 Å. The second-order spectra of detectors A and B cover 330 to 805 Å and are superimposed on the first-order spectra. Many more features and areas of the Sun and their spectra have been observed since, including coronal holes, polar plumes and active regions. The atoms and ions emitting this radiation exist at temperatures below 2 × 106 K and are thus ideally suited to investigate the solar transition region where the temperature increases from chromospheric to coronal values. SUMER can also be operated in a manner such that it makes images or spectroheliograms of different sizes in selected spectral lines. A detailed line profile with spectral resolution elements between 22 and 45 mÅ is produced for each line at each spatial location along the slit. From the line width, intensity and wavelength position we are able to deduce temperature, density, and velocity of the emitting atoms and ions for each emission line and spatial element in the spectroheliogram. Because of the high spectral resolution and low noise of SUMER, we have been able to detect faint lines not previously observed and, in addition, to determine their spectral profiles. SUMER has already recorded over 2000 extreme ultraviolet emission lines and many identifications have been made on the disk and in the corona.  相似文献   
293.
Micro- and macro-dispersive fluxes in canopy flows   总被引:3,自引:0,他引:3  
Resolving every detail of the three-dimensional canopy morphology and its underlying topography remains untenable when modeling high Reynolds number geophysical flows. How to represent the effects of such a complex morphological variability and any concomittant topographic variability into one-dimensional bulk flow representation remains a fundamental challenge to be confronted in canopy turbulence research. Theoretically, planar averaging to the scale of interest should be applied to the time-averaged mean momentum balance; however, such averaging gives rise to covariance or dispersive terms produced by spatial correlations of time-averaged quantities that remain ‘unclosed’ or require parameterization. When the averaging scale is commensurate with few canopy heights, these covariances can be labeled as ‘micro-dispersive’ stresses. When averaging is intended to eliminate low-wavenumber topographic variations, we refer to these covariances as ‘macro-dispersive’ terms. Two flume experiments were used to explore the magnitude and sign of both micro- and macro-dispersive fluxes relative to their conventional Reynolds stresses counterparts: a rod-canopy with variable roughness density and a dense rod canopy situated on gentle hilly terrain. When compared to the conventional momentum flux, the micro-dispersive fluxes in the lowest layers of sparse canopies can be significant (∼50%). For dense canopies, the dispersive terms remain negligible when compared to the conventional momentum fluxes throughout. For the macro-dispersive fluxes, model calculations suggest that these terms can be neglected relative to the Reynolds stresses for a deep canopy situated on a narrow hill. For the region in which topographic variations can interact with the pressure, both model calculations and flume experiments suggest that the macro-dispersive fluxes cannot be neglected, and their value can be 20% of the typical Reynolds stresses.  相似文献   
294.
The probability density function for sensible heat flux was measured above a uniform dry lakebed (Owens lake) in Owens Valley, California. It was found that for moderately stable to near neutral atmospheric stability conditions, the probability density function exhibits well defined exponential tails. These exponential tails are consistent with many laboratory boundarylayer measurements and numerical simulations. A model for the sensible heat flux probability density function was developed and tested. A key assumption in the model derivation was the near Gaussian statistics of the vertical velocity and temperature fluctuations. This assumption was verified from time series measurements of temperature and vertical velocity. The parameters for the sensible heat flux probability density function model were also derived from mean meteorological and surface conditions using surface-layer similarity theory. It was found that the best agreement between modeled and measured sensible heat flux probability density function was at the tails. Finally, a relation between the intermittency parameter, the probability density function, and the mean meteorological conditions was derived. This relation rigorously links the intermittency parameter to mean meteorological conditions.  相似文献   
295.
The intense activity at the south pole of Enceladus hints at an internal water reservoir. However, there is no direct evidence of liquid water at present and its long-term stability in the interior remains problematic. By modeling heat production and transfer in the ice shell in a spherical geometry, we show that tidal heating naturally leads to a concentration of convective hot upwellings in the south polar region, favoring the preservation of liquid water at depth. We show that large volumes of water are produced within the ice shell at the south pole during periods of elevated orbital eccentricity (3–5 times the present-day value). Strong lateral variations in the melt production and crystallization rates result in stress concentration in the south polar region, thus providing an explanation for the tectonic activity observed today. We predict that an internal ocean may be sustained over the long term as the consequence of repeated periods with elevated orbital eccentricity, leading to episodic melting and resurfacing events.  相似文献   
296.
Stable water isotope ratios are measured as a tracer of environmental processes in materials such as leaves, soils, and lakes. Water in these archives may experience evaporation, which increases the abundance of heavy isotopologues proportionally to the gradients in humidity and isotope ratio between the evaporating water and the surrounding atmosphere. The isotope ratio of the atmosphere has been difficult to measure until recently, and measurements remain scarce. As a result, several assumptions have been adopted to estimate isotope ratios of atmospheric water vapour. Perhaps the most commonly employed assumption in terrestrial environments is that water vapour is in isotopic equilibrium with precipitation. We evaluate this assumption using an eight‐member ensemble of general circulation model (GCM) simulations that include explicit calculation of isotope ratios in precipitation and vapour. We find that across the model ensemble, water vapour is typically less depleted in heavy isotopologues than expected if it were in equilibrium with annual precipitation. Atmospheric vapour likely possesses higher‐than‐expected isotope ratios because precipitation isotope ratios are determined by atmospheric conditions that favour condensation, which do not reflect atmospheric mixing and advection processes outside of precipitation events. The effect of this deviation on theoretical estimates of isotope ratios of evaporating waters scales with relative humidity. As a result, the equilibrium assumption gives relatively accurate estimates of the isotope ratios of evaporating waters in low latitudes but performs increasingly poorly at increasing latitudes. Future studies of evaporative water pools should include measurements of atmospheric isotope ratios or constrain potential bias with isotope‐enabled GCM simulations.  相似文献   
297.
Using synchronous multi-level high frequency velocity measurements, the turbulence spectra within the trunk space of an alpine hardwood forest were analysed. The spectral short-circuiting of the energy cascade for each velocity component was well reproduced by a simplified spectral model that retained return-to-isotropy and component-wise work done by turbulence against the drag and wake production. However, the use of an anisotropic drag coefficient was necessary to reproduce these measured component-wise spectra. The degree of anisotropy in the vertical drag was shown to vary with the element Reynolds number. The wake production frequency in the measured spectra was shown to be consistent with the vortex shedding frequency at constant Strouhal number given by f vs = 0.21ū/d, where d can be related to the stem diameter at breast height (dbh) and ū is the local mean velocity. The energetic scales, determined from the inflection point instability at the canopy–atmosphere interface, appear to persist into the trunk space when , where C du is the longitudinal drag coefficient, a cr is the crown-layer leaf area density, h c is the canopy height, and β is the dimensionless momentum absorption at the canopy top.  相似文献   
298.
299.
Global Positioning System (GPS) technologies have been frequently applied for the purpose of landslide monitoring. A local stable reference frame is essential for precisely interpreting landslide movements derived from GPS observations. In this study, we define a stable reference frame using over 5 years of continuous GPS data collected from eight permanent GPS stations in the Puerto Rico and Virgin Islands (PRVI) region. The realization of the Stable Puerto Rico and Virgin Islands Reference Frame (SPRVIRF) is defined in terms of a 14-parameter Helmert transformation from the International Global Navigation Satellite System (GNSS) Service Reference Frame of 2008 (IGS08). SPRVIRF is aligned with the IGS08 at epoch 2013.0. The GIPSY/OASIS (V6.2) software package, which employs the precise point positioning (PPP) with single receiver phase ambiguity resolution, was used to calculate position coordinates within IGS08. Through the combined use of the PPP post-processing method and SPRVIRF, it is practical and easy to conduct millimeter accuracy landslide monitoring by a single technician with a single GPS unit. SPRVIRF provides a precise common reference frame in the PRVI region that can be used for a broad range of research applications, such as delineating long-term landslide creeping, studying ground deformation associated with subsidence, fault creep, hydrologic loading and microplate motions, and monitoring long-term deformation of critical structures, such as dams, high-rise buildings, and long-span bridges.  相似文献   
300.
A regional geologic study of Arabia Terra, a densely cratered area of Mars northern hemisphere, has revealed the individuality of this province. This is best expressed by an equatorial belt with a crater age distinctly younger as compared to the northern part of Arabia Terra and to Noachis Terra to the south. We interpret this as an incipient back-arc system provoked by the subduction of Mars lowlands under Arabia Terra during Noachian times. The regional fracture patterns are also best explained in this manner, making it unnecessary to appeal to a rotational instability of the planet, which is not supported by the palaeoclimatic indicators in the area. This model could be the first regional-scale confirmation of Sleep's (1994) hypothesis of a limited plate consumption as an explanation of the martian dichotomy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号