首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   19篇
  国内免费   4篇
测绘学   6篇
大气科学   64篇
地球物理   99篇
地质学   109篇
海洋学   31篇
天文学   66篇
综合类   3篇
自然地理   20篇
  2024年   2篇
  2023年   2篇
  2022年   8篇
  2021年   9篇
  2020年   11篇
  2019年   9篇
  2018年   9篇
  2017年   16篇
  2016年   26篇
  2015年   20篇
  2014年   6篇
  2013年   23篇
  2012年   21篇
  2011年   18篇
  2010年   18篇
  2009年   22篇
  2008年   23篇
  2007年   9篇
  2006年   19篇
  2005年   17篇
  2004年   8篇
  2003年   7篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   8篇
  1998年   3篇
  1997年   15篇
  1996年   5篇
  1995年   8篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有398条查询结果,搜索用时 31 毫秒
11.
The structural analysis and the 3D modelling of Stephanian granites of the Pelvoux Massif characterize an emplacement along sinistral NW–SE- and dextral NE–SW-trending shear zones in the Pelvoux and in the Aiguilles Rouges–Mont Blanc Massifs, respectively. This Carboniferous shear system is consistent with a north–south extension direction known in the whole Variscan belt at this time. To cite this article: P. Strzerzynski et al., C. R. Geoscience 337 (2005).  相似文献   
12.
13.
14.
A new method was developed for analysing and delineating streambed water fluxes, flow conditions and hydraulic properties using coiled fibre‐optic distributed temperature sensing or closely spaced discrete temperature sensors. This method allows for a thorough treatment of the spatial information embedded in temperature data by creating a matrix visualization of all possible sensor pairs. Application of the method to a 5‐day field dataset reveals the complexity of shallow streambed thermal regimes. To understand how velocity estimates are affected by violations of assumptions of one‐dimensional, saturated, homogeneous flow and to aid in the interpretation of field observations, the method was also applied to temperature data generated by numerical models of common field conditions: horizontal layering, presence of lateral flow and variable streambed saturation. The results show that each condition creates a distinct signature visible in the triangular matrices. The matrices are used to perform a comparison of the behaviour of one‐dimensional analytical heat‐tracing models. The results show that the amplitude ratio‐based method of velocity calculation leads to the most reliable estimates. The minimum sensor spacing required to obtain reliable velocity estimates with discrete sensors is also investigated using field data. The developed method will aid future heat‐tracing studies by providing a technique for visualizing and comparing results from fibre‐optic distributed temperature sensing installations and testing the robustness of analytical heat‐tracing models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
15.
16.
17.
Freitas  Gabriel  Díaz  Ismael  Bessonart  Martín  da Costa  Edwin  Achkar  Marcel 《GeoJournal》2021,86(3):1155-1171

Floods are natural processes that constitute a hazard to society when associated to improper land use. Anthropic activities in floodplains are a factor of vulnerability that converts a natural hazard into a threat factor, eventually leading to disaster. Nowadays, natural and social complex processes demand integrated assessments in order to improve their understanding, helping decision making over sustainable use of territory, as well as integrating society’s activity in ecosystems and potentials, restrictions and benefits that society obtain from them. In this context, the objective of this work was to build a composite vulnerability model for a floodplain under urban influence, using an integrated assessment approach. This model was based on three dimensions; threat, fragility and an ecosystem services provision. These dimensions were calculated using both primary and secondary information, and weights by specialists. Main results show that the area presents high vulnerability with an increasing gradient towards high and urbanized areas, associated with an important number and relevant ecosystem services. Also, a spatial heterogeneity of the three dimensions emerged, making evident this area’s complexity and the need of integrated assessments to approach it. The composite vulnerability model proposed presents an elevated potential for natural and social processes analysis in floodplains, which is crucial for these territory management. Moreover, these integrated dimensions could contribute to decision making in different levels, as well as generating important supplies for environmental management and land planning.

  相似文献   
18.

Empirical evidence has shown that particle breakage affects the mechanical behaviour of granular materials. The source of this mechanism takes place at the particle scale, and the main consequence on the macromechanical behaviour is increasing compressibility. Due to the inverse correlation between particle size and particle crushing strength, coarse rockfill materials are particularly vulnerable to mechanical degradation due to particle breakage. However, such coarse materials do not fit in standard laboratory devices, and the alternative of large sample testing is usually unavailable or too expensive. Alternatively, recent works have proposed multi-scale approaches using the discrete element method (DEM) to carry out numerical testing of coarse crushable materials, although few studies have focused on size effects. This article presents the application of a DEM bonded-cell model to study particle size-strength correlation on angular rock aggregates. Each particle is modelled by a cluster of perfectly rigid polyhedral cells with Mohr–Coulomb contact law. Constant cell density within particles implies that the presence of potential fragmentation planes increases with size. Therefore, particle strength decreases with size. A comprehensive sensitivity analysis was carried out through 1477 particle crushing simulations in a given particle size. Based on published experimental data on calcareous rock aggregates, part of the simulations were used for calibration, and 97 additional simulations of a coarser size fraction were performed for validation. The results show a good agreement with the empirical data in terms of size effect and data scatter through Weibull statistics.

  相似文献   
19.
20.
Recent observations over the Sigsbee Escarpment in the Gulf of Mexico have revealed extremely energetic deep currents (near 1 m s−1), which are trapped along the escarpment. Both scientific interest and engineering needs demand dynamical understanding of these extreme events, and can benefit from a numerical model designed to complement observational and theoretical investigations in this region of complicated topography. The primary objective of this study is to develop a modeling methodology capable of simulating these physical processes and apply the model to the Sigsbee Escarpment region. The very steep slope of the Sigsbee Escarpment (0.05–0.1) limits the application of ocean models with traditional terrain-following (sigma) vertical coordinates, which may represent the very complicated topography in the region adequately, can result in large truncation errors during calculation of the horizontal pressure gradient. A new vertical coordinate system, termed a vanishing quasi-sigma coordinate, is implemented in the Navy Coastal Ocean Model for application to the Sigsbee Escarpment region. Vertical coordinate surfaces for this grid have noticeably gentler slopes than a traditional sigma grid, while still following the terrain near the ocean bottom. The new vertical grid is tested with a suite of numerical experiments and compared to a classical sigma-layer model. The numerical error is substantially reduced in the model with the new vertical grid. A one-year, realistic, numerical simulation is performed to simulate strong, deep currents over the Escarpment using a very-high-resolution nested modeling approach. The model results are analyzed to demonstrate that the deep-ocean currents in the simulation replicate the prominent dynamical features of the observed intense currents in the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号