首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   4篇
测绘学   2篇
大气科学   6篇
地球物理   25篇
地质学   82篇
海洋学   22篇
天文学   8篇
综合类   1篇
自然地理   11篇
  2022年   1篇
  2021年   6篇
  2020年   7篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   2篇
  2014年   6篇
  2013年   2篇
  2012年   3篇
  2011年   9篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   5篇
  1992年   2篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1980年   2篇
  1979年   5篇
  1978年   2篇
  1977年   6篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1953年   1篇
  1950年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
81.
This paper uses three‐dimensional (3D) seismic data from the continental margin of Israel (Eastern Mediterranean) to describe a series of slump deposits within the Pliocene and Holocene succession. These slumps are linked to the dynamics of subsidence and deformation of the transform margin of the eastern Mediterranean. Repeated slope failure occurred during the post‐Messinian, when a clay‐dominated progradational succession was forming. This resulted in large‐scale slump deposits accumulating in the mid‐lower slope region of the basin at different stratigraphic levels. It is probable that the slumps were triggered by a combination of slope oversteepening, seismic activity and gas migration. The high spatial resolution provided by the 3D seismic data has been used to define a spectrum of internal and external geometries within slump deposits. Importantly, we recognise two main zones for many of the slumps on this margin: a depletion zone and an accumulation zone. The former is characterised by extension and translation, and the latter by complex imbricate thrusts and fold systems. Volume‐based seismic attribute analysis reveals transport directions within the slump deposits, which are predominately downslope, but with subtle variations particularly at the lateral margins. Basal shear surfaces are observed to ramp both up and down stratigraphy. Slump evolution occurs both by retrogressive upslope failure, and by downslope propagation (out‐of‐sequence) failure. Slump anatomy and the combination of factors responsible for slump failure and transport are relatively poorly understood, mainly because of the limited 3D of outcrop control; hence, this subsurface study is an example of how improved understanding of the mechanisms and products can be obtained using this 3D seismic methodology in unstable margin areas.  相似文献   
82.
The Ronda peridotite massif in southern Spain originated from the upper mantle, evidently as a rapidly rising diapir. Major and trace element abundance trends of the peridotites reflect their origin as residues from partial melting of garnet lherzolite. About 5% of the massif consists of mafic rocks, mainly pyroxenites and gabbros. They occur as concordant layers amidst the peridotites, and these layers do not cross-cut each other. However, major and trace element data show that the mafic layers do not have the geochemical characteristics of primary melts. We conclude that crystal/liquid fractionation occurred at high pressures ( > 19 kbar) as melts migrated through magma conduits towards the cooler exterior portion of the diapir. This process generated a sequence of “cumulates” (mainly clinopyroxene + orthopyroxene + spinel and clinopyroxene + garnet) along the walls of the conduits which are now represented by the mafic layers.  相似文献   
83.
Volcanism associated with the Kerguelen Large Igneous Province is found scattered in southwestern Australia (the ca 136 to ca 130 Ma Bunbury Basalts, and ca 124 Ma Wallaby Plateau), India (ca 118 Ma Rajmahal Traps and Cona Basalts), and Tibet (the ca 132 Ma Comei Basalts), but apart from the ~70 000 km2 Wallaby Plateau, these examples are spatially and volumetrically minor. Here, we report dredge, geochronological and geochemical results from the ~90 000 km2 Naturaliste Plateau, located ~170 to ~500 km southwest of Australia. Dredged lavas and intrusive rocks range from mafic to felsic compositions, and prior geophysical analyses indicate these units comprise much of the plateau substrate. 40Ar/39Ar plagioclase ages from mafic units and U–Pb zircon ages from silicic rocks indicate magmatic emplacement from 130.6 ± 1.2 to 129.4 ± 1.3 Ma for mafic rocks and 131.8 ± 3.9 to 128.2 ± 2.3 Ma for silicic rocks (2σ). These Cretaceous Naturaliste magmas incorporated a significant component of continental crust, with relatively high 87Sr/86Sr (up to 0.78), high 207Pb/204 Pb ratios (15.5–15.6), low 143Nd/144Nd (0.511–0.512) and primitive-mantle normalised Th/Nb of 11.3 and La/Nb of 3.97. These geochemical results are consistent with the plateau being underlain by continental basement, as indicated by prior interpretations of seismic and gravity data, corroborated by dredging of Mesoproterozoic granites and gneisses on the southern plateau flank. The Cretaceous Naturaliste Plateau igneous rocks have signatures indicative of extraction from a depleted mantle, with trace-element and isotopic values that overlap with Kerguelen Plateau lavas reflect crustal contamination. Our chemical and geochronological results therefore show the Naturaliste Plateau contains evidence of an extensive igneous event representing some of the earliest voluminous Kerguelen hotspot magmas. Prior work reports that contemporaneous correlative volcanic sequences underlie the nearby Mentelle Basin, and the Enderby Basin and Princess Elizabeth Trough in the Antarctic. When combined, the igneous rocks in the Naturaliste, Mentelle, Wallaby, Enderby, Princess Elizabeth, Bunbury and Comei-Cona areas form a 136–124 Ma Large Igneous Province covering >244 000 km2.  相似文献   
84.
Tholeiitic basalts dredged from the Mid-Atlantic Ridge (MAR) axis at 43 ° N are enriched in incompatible trace elements compared to the ‘ normal’ incompatible element depleted tholeiites found from 49 ° N to 59 ° N and south of 33 ° N on the MAR. The most primitive 43 ° N glasses have MgO/FeO*= 1.2 and coexist with olivine (Fo90–91) and chrome-rich spinel. The tholeiitic basalts from the MAR 43 ° N are distinct from the strongly incompatible trace element depleted tholeiities found elsewhere in the Atlantic, and have trace element features typical of island tholeiities and MAR axis tholeiites from 45 ° N. Petrographic, major, and compatible trace element trends of the axial valley tholeiites at 43 ° N are consistent with shallow-level fractionation; in particular, evolution from primitive liquids with forsteritic olivine plus chrome spinel as liquidus phases to fractionated liquids with plagioclase plus clinopyroxene as major crystallizing phases. However, each dredge haul has distinctive incompatible trace element abundances. These trace element characteristics require a hetrogeneous mantle or complex processes such as open system fractional crystallization and magma mixing. Alkali basalts (~5% normative nepheline) were dredged from a prominent fracture zone at 43 ° N. Typical of alkali basalts they are strongly enriched (compared to tholeiites) in incompatible elements. Their highly fractionated rare-earth element (REE) abundances require residual garnet during partial melting. The 43 ° N tholeiites and alkali basalts could be derived from a garnet peridotite source with REE contents equal to 2 × chondrites by ~5% and 1% melting, respectively. Alternatively, they could be derived from a moderately light REE enriched source by ~25% and 9.5% melting, respectively.  相似文献   
85.
Kohala Volcano, the oldest of five shield volcanoes comprising the island of Hawaii, consists of a basalt shield dominated by tholeiitic basalt, Pololu Volcanics, overlain by alkalic lavas, Hawi Volcanics. In the upper Pololu Volcanics the lavas become more enriched in incompatible elements, and there is a transition from tholeiitic to alkalic basalt. In contrast, the Hawi volcanics consist of hawaiites, mugearites, and trachytes. 87Sr/86Sr ratios of 14 Pololu basalts and 5 Hawi lavas range from 0.70366 to 0.70392 and 0.70350 to 0.70355, respectively. This small but distinct difference in Sr isotopic composition of different lava types, especially the lower 87Sr/86Sr in the younger lavas with higher Rb/Sr, has been found at other Hawaiian volcanoes. Our data do not confirm previous data indicating Sr isotopic homogeneity among lavas from Kohala Volcano. Also some abundance trends, such as MgO-P2O5, are not consistent with a simple genetic relationship between Pololu and Hawi lavas. We conclude that all Kohala lavas were not produced by equilibrium partial melting of a compositionally homogeneous source.  相似文献   
86.
Post-glacial tholeiitic basalts from the western Reykjanes Peninsula range from picrite basalts (oldest) to olivine tholeiites to tholeiites (youngest). In this sequence there are large systematic variations in rare earth element (REE) abundances (La/Sm normalized to chondrites ranges from 0.33 in the picrite basalts to 1.25 in the fissure tholeiites) and corresponding variations in 143Nd/144Nd (0.51317 in the picrite basalts to 0.51299 in the fissure tholeiites). The large viaration in 143Nd/144Nd, more than one-third the total range observed in most ocean islands and mid-ocean ridge basalts (MORB), is accompanied by only a small variation in 87Sr/86Sr (0.7031–0.7032). These 87Sr/86Sr ratios are within the range of other Icelandic tholeiites, and distinct from those of MORB.We conclude that the mantle beneath the Reykjanes Peninsula is heterogeneous with respect to relative REE abundances and 143Nd/144Nd ratios. On a time-averaged basis all parts of this mantle show evidence of relative depletion in light REE. Though parts of this mantle have REE abundances and Nd isotope ratios similar to the mantle source of “normal” MORB, 87Sr/86Sr is distinctly higher. Unlike previous studies we find no evidence for chondritic relative REE abundances in the mantle beneath the Reykjanes Peninsula; in fact, the data require significant chemical heterogeneity in the hypothesized mantle plume beneath Iceland, as well as lateral mantle heterogeneity from the Reykjanes Ridge to the Reykjanes Peninsula. The compositional range of the Reykjanes Peninsula basalts is consistent with mixing of magmas produced by different degrees of melting in different parts of the heterogeneous mantle source beneath the Reykjanes Peninsula.  相似文献   
87.
We present a new algorithm for retrieving sea ice concentration from the AMSR-E data, the dual-polarized ratio (DPR) algorithm. The DPR algorithm is developed using vertically and horizontally polarized brightness temperatures at the same channel of 36.5 GHz. It depends on the ratio of dual-polarized emissivity, α, which is determined empirically at about 0.92 by remotely sensed brightness temperature in winter and used for the other seasons as well. The ice concentration retrieved by the DPR is compared with those by the NT2 and ABA algorithms. Since the main difference among these algorithms takes place in marginal ice zones, 17 marginal ice zones are chosen. The retrieved ice concentrations in these zones are examined by the ice concentration obtained by the MODIS data. The mean error, root-mean-square error and mean absolute error of the DPR algorithm are relatively better than those from the other two algorithms. The results of this study illustrate that the DPR algorithm is a more accurate algorithm for retrieving sea ice concentration from the AMSR-E brightness temperature, and can be used for operational purposes.  相似文献   
88.
We show from elastic neutron diffraction data that anorthite CaAl2Si2O8 (An100) undergoes a primitive to body-centered phase transition at T c =237±1°C. The transition is reversible, and T c is well defined. Our measurements demonstrate that the I-lattice at the high temperature phase applies to all structural elements; in other words, the time-averaged lattice is exactly body-centered and not just in the space average of An100, as concluded earlier by other authors.  相似文献   
89.
In an effort to obtain information about mineral/melt trace element partitioning during the high pressure petrogenesis of basic rocks, we determined rare earth and other trace element abundances in megacrysts of clinopyroxene, orthopyroxene, amphibole, mica, anorthoclase, apatite and zircon, and in their host basalts. In general, the ranges of mineral/melt partition coefficients established from experimental partitioning studies and phenocryst/matrix measurements overlap with the ranges of megacryst/host abundance ratios. Our data for Hf, Sc, Ta and Th partitioning represent some of the only estimates available. Consideration of phase equilibria, major element partitioning and isotopic ratios indicate that most of the pyroxene and amphibole megacrysts may have been in equilibrium with their host magmas at high pressures (mostly 10–25 kb). In contrast, it is unlikely that mica, anorthoclase, apatite and zircon megacrysts formed in equilibrium with their host basalts; instead, we conclude that they were precipitated from more evolved magmas and have been mixed into their present host magmas. Consequently, the trace element abundance ratios for megacryst/host should not be interpreted as partition coefficients, but only as guides for understanding trace element partitioning during high pressure petrogenesis. With this caveat, we conclude that the megacryst/ host trace element abundance data indicate that mineral/melt partition coefficients in basaltic systems during high pressure fractionation are not drastically different from partition coefficients valid for low pressure fractionation.  相似文献   
90.
The interaction between surface water and groundwater during flood events is a complex process that has traditionally been described using simplified analytical solutions, or abstracted numerical models. To make the problem tractable, it is common to idealize the flood event, simplify river channel geometry, and ignore bank soil heterogeneity, often resulting in a model that only loosely represents the site, thus limiting its applicability to any specific river cross-section. In this study, we calibrate a site-specific fully-integrated surface and subsurface HydroGeoSphere model using flood events for a cross-section along the South River near Waynesboro, VA. The calibration approach presented in this study demonstrates the incorporation of fining direction regularization with a highly parameterized inversion driven by natural stimuli, to develop several realistic realizations of hydraulic conductivity fields that reflect the depositional history of the system. Specifically, we calibrate a model with 365 unique material zones to multiple flood events recorded in a dense well network while incorporating possible fining sequences consistent with the depositional history of the riverbank. Over 25,000 individual simulations were completed using calibration software and a cloud platform specifically designed for highly parallelized computing environments. The results of this study demonstrate the use of fining direction regularization during model calibration to generate multiple calibrated model realizations that account for the depositional environment of the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号