首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1595篇
  免费   40篇
  国内免费   23篇
测绘学   53篇
大气科学   159篇
地球物理   279篇
地质学   616篇
海洋学   124篇
天文学   289篇
综合类   11篇
自然地理   127篇
  2023年   9篇
  2021年   17篇
  2020年   17篇
  2019年   17篇
  2018年   34篇
  2017年   28篇
  2016年   40篇
  2015年   25篇
  2014年   44篇
  2013年   70篇
  2012年   54篇
  2011年   74篇
  2010年   74篇
  2009年   117篇
  2008年   78篇
  2007年   96篇
  2006年   77篇
  2005年   86篇
  2004年   53篇
  2003年   48篇
  2002年   52篇
  2001年   41篇
  2000年   40篇
  1999年   29篇
  1998年   26篇
  1997年   21篇
  1996年   20篇
  1995年   19篇
  1994年   21篇
  1993年   16篇
  1992年   15篇
  1991年   14篇
  1990年   14篇
  1988年   12篇
  1986年   11篇
  1985年   15篇
  1984年   13篇
  1983年   22篇
  1982年   16篇
  1981年   15篇
  1980年   12篇
  1979年   9篇
  1978年   9篇
  1977年   8篇
  1976年   15篇
  1975年   8篇
  1973年   15篇
  1972年   15篇
  1971年   11篇
  1970年   9篇
排序方式: 共有1658条查询结果,搜索用时 15 毫秒
21.
The Fuscaldo assemblages show that in metabasites suitable for the production of glaucophane at higher pressures, amphibole poor(er) in Gl-molecule + albite + Al-rich chlorite is formed at lower pressure. Blue amphibole formed together with albite, chlorite and a Ca-silicate appears to have a fixed content of the Gl-molecule and of Ca2+, apart from the Fe2+/ R2+ ratio, which varies with host rock chemistry. The constant Gl-content indicates attainment of equilibrium, and is a function of T and especially P, so it may be used as a geobarometer. Glaucophane generally forms at the cost of albite+chlorite. In a P-T diagram the reaction is probably situated somewhat below the reaction albitejadeite+quartz, and has a smaller slope than the latter. The concomitant high-pressure character of glaucophane justifies reintroduction of Eskola's glaucophane-schist facies, of which glaucophane is critical.  相似文献   
22.
Brothers volcano, of the Kermadec intraoceanic arc, is host to a hydrothermal system unique among seafloor hydrothermal systems known anywhere in the world. It has two distinct vent fields, known as the NW Caldera and Cone sites, whose geology, permeability, vent fluid compositions, mineralogy, and ore-forming conditions are in stark contrast to each other. The NW Caldera site strikes for ??600?m in a SW?CNE direction with chimneys occurring over a ??145-m depth interval, between ??1,690 and 1,545?m. At least 100 dead and active sulfide chimney spires occur in this field and are typically 2?C3?m in height, with some reaching 6?C7?m. Their ages (at time of sampling) fall broadly into three groups: <4, 23, and 35?years old. The chimneys typically occur near the base of individual fault-controlled benches on the caldera wall, striking in lines orthogonal to the slopes. Rarer are massive sulfide crusts 2?C3?m thick. Two main types of chimney predominate: Cu-rich (up to 28.5?wt.% Cu) and, more commonly, Zn-rich (up to 43.8?wt.% Zn). Geochemical results show that Mo, Bi, Co, Se, Sn, and Au (up to 91?ppm) are correlated with the Cu mineralization, whereas Cd, Hg, Sb, Ag, and As are associated with the dominant Zn-rich mineralization. The Cone site comprises the Upper Cone site atop the summit of the recent (main) dacite cone and the Lower Cone site that straddles the summit of an older, smaller, more degraded dacite cone on the NE flank of the main cone. Huge volumes of diffuse venting are seen at the Lower Cone site, in contrast to venting at both the Upper Cone and NW Caldera sites. Individual vents are marked by low-relief (??0.5?m) mounds comprising predominately native sulfur with bacterial mats. Vent fluids of the NW Caldera field are focused, hot (??300°C), acidic (pH????2.8), metal-rich, and gas-poor. Calculated end-member fluids from NW Caldera vents indicate that phase separation has occurred, with Cl values ranging from 93% to 137% of seawater values. By contrast, vent fluids at the Cone site are diffuse, noticeably cooler (??122°C), more acidic (pH?1.9), metal-poor, and gas-rich. Higher-than-seawater values of SO4 and Mg in the Cone vent fluids show that these ions are being added to the hydrothermal fluid and are not being depleted via normal water/rock interactions. Iron oxide crusts 3?years in age cover the main cone summit and appear to have formed from Fe-rich brines. Evidence for magmatic contributions to the hydrothermal system at Brothers includes: high concentrations of dissolved CO2 (e.g., 206?mM/kg at the Cone site); high CO2/3He; negative ??D and ??18OH2O for vent fluids; negative ??34S for sulfides (to ?4.6??), sulfur (to ?10.2??), and ??15N2 (to ?3.5??); vent fluid pH values to 1.9; and mineral assemblages common to high-sulfidation systems. Changing physicochemical conditions at the Brothers hydrothermal system, and especially the Cone site, occur over periods of months to hundreds of years, as shown by interlayered Cu?+?Au- and Zn-rich zones in chimneys, variable fluid and isotopic compositions, similar shifts in 3He/4He values for both Cone and NW Caldera sites, and overprinting of ??magmatic?? mineral assemblages by water/rock-dominated assemblages. Metals, especially Cu and possibly Au, may be entering the hydrothermal system via the dissolution of metal-rich glasses. They are then transported rapidly up into the system via magmatic volatiles utilizing vertical (??2.5?km long), narrow (??300-m diameter) ??pipes,?? consistent with evidence of vent fluids forming at relatively shallow depths. The NW Caldera and Cone sites are considered to represent stages along a continuum between water/rock- and magmatic/hydrothermal-dominated end-members.  相似文献   
23.
Great Salt Lake (GSL) is one of the largest and most saline lakes in the world. In order to accurately model limnological processes in GSL, hydrodynamic calculations require the precise estimation of water density (ρ) under a variety of environmental conditions. An equation of state was developed with water samples collected from GSL to estimate density as a function of salinity and water temperature. The ρ of water samples from the south arm of GSL was measured as a function of temperature ranging from 278 to 323 degrees Kelvin (oK) and conductivity salinities ranging from 23 to 182 g L−1 using an Anton Paar density meter. These results have been used to develop the following equation of state for GSL (σ = ± 0.32 kg m−3):
r- r0 = 184.0 10 6 2 + 1.0 4 70 8*\textS - 1. 2 10 6 1*\textT + 3. 1 4 7 2 1 \textE - 4*\textS 2 +  0.00 1 9 9 \textT 2 - 0.00 1 1 2*\textS*\textT, \rho - \rho^{0} = { 184}.0 10 6 2 { } + { 1}.0 4 70 8*{\text{S}} - 1. 2 10 6 1*{\text{T }} + { 3}. 1 4 7 2 1 {\text{E}} - 4*{\text{S}}^{ 2} + \, 0.00 1 9 9 {\text{T}}^{ 2} - 0.00 1 1 2*{\text{S}}*{\text{T}},  相似文献   
24.
Mercury vapor (Hg0) emission from plants contributes to the atmospheric Hg cycle. Young barley (Hordeum vulgare L.) plants grown on a hydroponic cultivation medium containing Hg(II) have previously been shown to increase their Hg0 emission significantly by reduction of Hg(II) with endogenous ascorbic acid. Regarding the potential contribution to the Hg cycle from the vast forest-covered areas, it was important to investigate this mechanism in trees. The increase in Hg0 emission from young European beech plants cultivated on a HgCl2 medium exceeded that from controls by ca. tenfold and was proportional to the Hg(II) concentration. From these experiments, a flux of 12.8 μg Hg0/h/m2 was estimated at an exposure of the roots to 20 μM Hg(II). Mercury vapor release from homogenates of Norway spruce needles exceeded that from European beech leaves by a factor of 2.3–4, i.e. in proportion to the reported AA concentrations; the reduction was maximal at alkaline pH which is typical for AA. The 8.4-fold difference in Hg0 release between homogenates from wild-type Arabidopsis thaliana and from its AA-deficient mutant vtc 1-1 also paralleled the reported difference in AA levels of both species. It is concluded that the phytoreduction and vaporization of Hg by AA is an important mechanism as much for Hg detoxification in trees as for Hg emission to the atmosphere. The efficiency of this process seems to result from the optimal coordination of transfer and biochemical transformation of mercuric ions and Hg vapor. There is no evidence for a relevant difference in the mechanisms of biogenic Hg(II) reduction between grass plants and trees.  相似文献   
25.
This study presents a reconstruction of the tectonic history of an Upper Rotliegend tight gas field in Northern Germany. Tectonism of the greater study area was influenced by multiple phases of salt movement, which produced a variety of salt-related structural features such as salt walls, salt diapirs as well as salt glaciers (namakiers). A sequential 2D retro-deformation and stratal backstripping methodology was used to differentiate mechanisms inducing salt movement and to discuss their relation to regional tectonics. The quantitative geometric restoration included sedimentary balancing, decompaction, fault-related deformation, salt movement, thermal subsidence, and isostasy to unravel the post-depositional tectonic overprint of the Rotliegend reservoir rock. The results of this study indicate that reactive salt diapirism started during an Early Triassic interval of thin-skinned extensional tectonics, followed by an active diapirism stage with an overburden salt piercement in the Late Triassic, and finally a period of intensive salt surface extrusion and the formation of salt glaciers (namakiers) in Late Triassic and Jurassic times. Since the Early Cretaceous, salt in the study area has been rising by passive diapirism.  相似文献   
26.
Research into natural mass‐dependent stable isotope fractionation of cadmium has rapidly expanded in the past few years. Methodologies are diverse with MC‐ICP‐MS favoured by all but one laboratory, which uses thermal ionisation mass spectrometry (TIMS). To quantify the isotope fractionation and correct for instrumental mass bias, double‐spike techniques, sample‐calibrator bracketing or element doping has been used. However, easy comparison between data sets has been hampered by the multitude of in‐house Cd solutions used as zero‐delta reference in different laboratories. The lack of a suitable isotopic reference material for Cd is detrimental for progress in the long term. We have conducted a comprehensive round‐robin assay of NIST SRM 3108 and the Cd isotope offsets to commonly used in‐house reference materials. Here, we advocate NIST SRM 3108 both as an isotope standard and the isotopic reference point for Cd and encourage its use as ‘zero‐delta’ in future studies. The purity of NIST SRM 3108 was evaluated regarding isobaric and polyatomic molecular interferences, and the levels of Zn, Pd and Sn found were not significant. The isotope ratio 114Cd/110Cd for NIST SRM 3108 lies within ~ 10 ppm Da?1 of best estimates for the Bulk Silicate Earth and is validated for all measurement technologies currently in use.  相似文献   
27.
Adsorption and Desorption of Phosphate on Calcite and Aragonite in Seawater   总被引:3,自引:0,他引:3  
The adsorption and desorption of phosphate on calcite and aragonite were investigated as a function of temperature (5–45 °C)and salinity (0–40) in seawater pre-equilibrated with CaCO3. An increase in temperature increased the equilibrium adsorption; whereas an increase in salinity decreased the adsorption. Adsorption measurements made in NaCl were lower than the results in seawater. The higher values in seawater were due to the presence of Mg2+ and Ca2+ ions. The increase was 5 times greater for Ca2+ than Mg2+. The effects ofCa2+ and Mg2+ are diminished with the addition of SO4 2- apparently due to the formation of MgSO4 and CaSO4 complexes in solution and/or SO4 2- adsorption on the surface of CaCO3. The adsorbed Ca2+ and Mg2+ on CaCO3 (at carbonate sites) may act as bridges to PO4 3- ions. The bridging effect of Ca2+is greater than Mg2+ apparently due to the stronger interactions of Ca2+ with PO4 3-.The apparent effect of salinity on the adsorption of PO4 was largely due to changes in the concentration of HCO3 - in the solutions. An increase in the concentration of HCO3 - caused the adsorption of phosphate to decrease, especially at low salinities. The adsorption at the same level of HCO3 - (2 mM) was nearly independent of salinity. All of the adsorption measurements were modeled empirically using a Langmuir-type adsorption isotherm[ [PO4]ad = KmCm[PO4]T/(1 +Km [PO4]T) , ]where [PO4]ad and [PO4]T are the adsorbed and total dissolved phosphate concentrations, respectively. The values of Cm (the maximum monolayer adsorption capacity, (mol/g) and Km (the adsorption equilibrium constant, g/(mol) over the entire temperature (t, °C) and salinity (S) range were fitted to[ Cm = 17.067 + 0.1707t - 0.4693S + 0.0082S2 ( = 0.7) ][ ln Km = - 2.412 + 0.0165t - 0.0004St - 0.0008S2 ( = 0.1) ]These empirical equations reproduce all of our measurements of[PO4]ad up to 14 mol/g and within ±0.7 mol/g.The kinetic data showed that the phosphate uptake on carbonate minerals appears to be a multi-step process. Both the adsorption and desorption were quite fast in the first stage (less than 30 min) followed by a much slower process (lasting more than 1 week). Our results indicate that within 24 hours aragonite has a higher sorption capacity than calcite. The differences between calcite and aragonite become smaller with time. Consequently, the mineral composition of the sediments may affect the short-term phosphate adsorption and desorption on calcium carbonate. Up to 80 % of the adsorbed phosphate is released from calcium carbonate over one day. The amount of PO4 left on the CaCO3 is close to the equilibrium adsorption. The release of PO4 from calcite is faster than from aragonite. Measurements with Florida Bay sediments produced results between those for calcite and aragonite. Our results indicate that the calcium carbonate can be both a sink and source of phosphate in natural waters.  相似文献   
28.
This paper presents the hydrological coupling of the software framework OpenGeoSys (OGS) with the EPA Storm Water Management Model (SWMM). Conceptual models include the Saint Venant equation for river flow, the 2D Darcy equations for confined and unconfined groundwater flow, a two-way hydrological coupling flux in a compartment coupling approach (conductance concept), and Lagrangian particles for solute transport in the river course. A SWMM river–OGS aquifer inter-compartment coupling flux is examined for discharging groundwater in a systematic parameter sensitivity analysis. The parameter study involves a small perturbation (first-order) sensitivity analysis and is performed for a synthetic test example base-by-base through a comprehensive range of aquifer parametrizations. Through parametrization, the test cases enables to determine the leakance parameter for simulating streambed clogging and non-ocillatory river-aquifer water exchange rates with the sequential (partitioned) coupling scheme. The implementation is further tested with a hypothetical but realistic 1D river–2D aquifer model of the Poltva catchment, where discharging groundwater in the upland area affects the river–aquifer coupling fluxes downstream in the river course (propagating feedbacks). Groundwater contribution in the moving river water is numerically determined with Lagrangian particles. A numerical experiment demonstrates that the integrated river–aquifer model is a serviceable and realistic constituent in a complete compartment model of the Poltva catchment.  相似文献   
29.
Secondary carbonate formations, such as travertine and calcareous tufa deposits, are important archives for quaternary continental climate studies and archaeology. The extremely complex growth mechanisms result in some serious problems for precise mass spectrometric uranium-series dating. Often, detrital and organic particles contaminate the carbonate and large pore volumes yield a great potential for open system behavior. We utilized microscopic, mineralogical and geochemical methods prior to sample selection to determine the abundance of primary calcite, i.e. micrite and spar. Furthermore, the state of alteration was characterized by cathodoluminescence and trace-element analysis. We conclude that travertine and calcareous tufa are appropriate for precise U-series age determination if a) micrite and/or spar are the dominant phases; b) cathodoluminescence of both phases is weak or absent; c) Fe and Al levels are low; and d) Sr concentrations are close to the average of the studied site. We mapped and sampled solely areas of major micrite/spar abundance having minor alteration for accurate U-series dating. When this new method was applied, travertines located in eastern Germany (sites Bad Langensalza, Burgtonna and Weimar-Ehringsdorf) gave single 230Th/238U-ages consistent with the lithological growth sequence and greatly improved compared to previously published chronologies. In addition, we determined 230Th/U isochron ages on bulk samples that confirm our single ages. In contrast to primary calcite, pore cements are homogeneously distributed throughout the travertine fabric and reflect early diagenetic processes and/or weathering.  相似文献   
30.
A. H. N. Rice  W. Frank 《Tectonophysics》2003,374(3-4):219-236
The relative significance of early (Finnmarkian) and late (Scandian) Caledonian deformation in N. Norway is uncertain. Early studies suggested pervasive Finnmarkian deformation whilst later results indicated a restricted Finnmarkian domain. The present work suggests it was more widespread than accepted and that inter Finnmarkian–Scandian deformation occurred. 40Ar/39Ar dating of 2–6 and 6–11 μm pelitic fractions from the lower to mid-greenschist facies Tanahorn Nappe (five samples; base Middle Allochthon) and the epizone Løkvikfjellet and Barents Sea Groups (three samples; North Varanger Region) in the north Scandinavian Caledonides show slightly discordant spectra. Most spectra from the Tanahorn Nappe preserve possible evidence of an early Caledonian event in the high temperature steps, with recoil/excess Ar effects in the low temperature steps; no pre-Caledonian relict component has been recorded. The results indicate Finnmarkian deformation continued to 460 Ma, with Scandian reactivation at 425–415 Ma. From the North Varanger Region, a strongly crenulated sample yielded plateau ages (444–442 Ma); means of combined young steps from weakly to uncrenulated samples gave 470–450 Ma, suggesting penetrative strike-slip deformation occurred in the late Finnmarkian to inter-Finnmarkian–Scandian period. No Scandian ages were recorded in the North Varanger Region. Reassessment of published data from the Laksefjord Nappe and Gaissa Thrust Belt suggests they were affected by Finnmarkian deformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号