Through their consumption behavior, households are responsible for 72% of global greenhouse gas emissions. Thus, they are key actors in reaching the 1.5 °C goal under the Paris Agreement. However, the possible contribution and position of households in climate policies is neither well understood, nor do households receive sufficiently high priority in current climate policy strategies. This paper investigates how behavioral change can achieve a substantial reduction in greenhouse gas emissions in European high-income countries. It uses theoretical thinking and some core results from the HOPE research project, which investigated household preferences for reducing emissions in four European cities in France, Germany, Norway and Sweden. The paper makes five major points: First, car and plane mobility, meat and dairy consumption, as well as heating are the most dominant components of household footprints. Second, household living situations (demographics, size of home) greatly influence the household potential to reduce their footprint, even more than country or city location. Third, household decisions can be sequential and temporally dynamic, shifting through different phases such as childhood, adulthood, and illness. Fourth, short term voluntary efforts will not be sufficient by themselves to reach the drastic reductions needed to achieve the 1.5 °C goal; instead, households need a regulatory framework supporting their behavioral changes. Fifth, there is a mismatch between the roles and responsibilities conveyed by current climate policies and household perceptions of responsibility. We then conclude with further recommendations for research and policy. 相似文献
This study focuses on the sources of alkali and alkaline-earth elements based on the geochemistry of groundwater and surface water in Dschang concerning environmental and anthropogenic constraints. A comprehensive set of 50 samples from groundwater and surface water were analyzed by ICPMS and processed by spatial interpolation in a GIS environment. The results highlight a geochemical anomaly at the center of the densely inhabited area subject to a profusion of open dumps discharges. This anomaly with the highest spatial contents of Be(Cs, Rb, Mg) suggests an anthropogenic source that demarcates with the lowest alkali and alkaline-earth elements on the peripheral area of Dschang. Other findings include lithological constraints with volcanic rocks being the main source compared to granitoid.The study points out good correlations between Be, Cs, Rb and Mg spatial distributions and physicochemical parameters of waters(K, EC, TDS), and inversely with the lowest p H. p H is established as the most functioning physico-chemical constraint of alkali and alkaline-earth mobility in Dschang. The p H lowest values within the geochemical anomaly also highlight the impact of human activities on water acidity, which later enhance elements mobility and enrichment. Despite low elements contents relative to WHO standards, our findings point out an example of anthropogenic impact on water geochemistry linked to solid waste pollution; it also demonstrates significant anthropogenic changes of environmental physicochemical parameters of prime importance in the mobility and distribution of elements in the study area.Similar assessments should be extended in major towns in Cameroon. 相似文献
This paper is concerned with some new problems of the dynamics and energetics of the Earth's core. The model of the so-called gravitationally-powered dynamo is investigated under the assumption of liquid immiscibility in the FeS system as a possible core material. In this way the growing inner core causes nucleation of small FeS-droplets that ascend under the release of gravitational potential energy. This energy is enough to drive a dynamo with a toroidal magnetic field of mean size. 相似文献
Mitigating and adapting to global changes requires a better understanding of the response of the Biosphere to these environmental variations. Human disturbances and their effects act in the long term (decades to centuries) and consequently, a similar time frame is needed to fully understand the hydrological and biogeochemical functioning of a natural system. To this end, the ‘Centre National de la Recherche Scientifique’ (CNRS) promotes and certifies long-term monitoring tools called national observation services or ‘Service National d'Observation’ (SNO) in a large range of hydrological and biogeochemical systems (e.g., cryosphere, catchments, aquifers). The SNO investigating peatlands, the SNO ‘Tourbières’, was certified in 2011 ( https://www.sno-tourbieres.cnrs.fr/ ). Peatlands are mostly found in the high latitudes of the northern hemisphere and French peatlands are located in the southern part of this area. Thus, they are located in environmental conditions that will occur in northern peatlands in coming decades or centuries and can be considered as sentinels. The SNO Tourbières is composed of four peatlands: La Guette (lowland central France), Landemarais (lowland oceanic western France), Frasne (upland continental eastern France) and Bernadouze (upland southern France). Thirty target variables are monitored to study the hydrological and biogeochemical functioning of the sites. They are grouped into four datasets: hydrology, fluvial export of organic matter, greenhouse gas fluxes and meteorology/soil physics. The data from all sites follow a common processing chain from the sensors to the public repository. The raw data are stored on an FTP server. After operator or automatic processing, data are stored in a database, from which a web application extracts the data to make them available ( https://data-snot.cnrs.fr/data-access/ ). Each year at least, an archive of each dataset is stored in Zenodo, with a digital object identifier (DOI) attribution ( https://zenodo.org/communities/sno_tourbieres_data/ ). 相似文献
The right-lateral strike-slip El Pilar Fault is one of the major structures that accommodate the relative displacement between the Caribbean and South-America Plates. This fault, which trends East–West along the northeastern Venezuela margin, is a seismogenic source, and shows numerous evidence for active tectonics, including deformation of the Quaternary sediments filling the Cariaco Gulf. Because the main El Pilar Fault strand belongs to a set of strike-slip faults and thrusts between the stable Guyana shield (South) and the Caribbean oceanic floor (North), a GPS network was designed and installed to measure the relative motion of the El Pilar Fault and other faults. The results obtained from the comparison of 2003 and 2005 surveys indicate: (i) a lack of significant displacement (especially shortening) in the Serrania del Interior (Neogene cordillera overthrusted above the Guyana craton), (ii) an eastward displacement (relative to fixed south America plate) up to 22 mm/year of benchmarks located north of the El Pilar Fault. 相似文献
The king scallop (Pecten maximus) is one of the most important benthic species of the English Channel as it constitutes the first fishery in terms of landings in this area. To support strategies of spatial fishery management, we develop a high-resolution biophysical model to study scallop dispersal in two bays along the French coasts of the English Channel (i.e. the bay of Saint-Brieuc and the bay of Seine) and to quantify the relative roles of local hydrodynamic processes, temperature-dependent planktonic larval duration (PLD) and active swimming behaviour (SB). The two bays are chosen for three reasons: (1) the distribution of the scallop stocks in these areas is well known from annual scallop stock surveys, (2) these two bays harbour important fisheries and (3) scallops in these two areas present some differences in terms of reproductive cycle and spawning duration. The English Channel currents and temperature are simulated for 10 years (2000–2010) with the MARS-3D code and then used by the Lagrangian module of MARS-3D to model the transport. Results were analysed in terms of larval distribution at settlement and connectivity rates. While larval transport in the two bays depended both on the tidal residual circulation and the wind-induced currents, the relative role of these two hydrodynamic processes varied among bays. In the bay of Saint-Brieuc, the main patterns of larval dispersal were due to tides, the wind being only a source of variability in the extent of larval patch and the local retention rate. Conversely, in the bay of Seine, wind-induced currents altered both the direction and the extent of larval transport. The main effect of a variable PLD in relation to the thermal history of each larva was to reduce the spread of dispersal and consequently increase the local retention by about 10 % on average. Although swimming behaviour could influence larval dispersal during the first days of the PLD when larvae are mainly located in surface waters, it has a minor role on larval distribution at settlement and retention rates. The analysis of the connectivity between subpopulations within each bay allows identifying the main sources of larvae which depend on both the characteristics of local hydrodynamics and the spatial heterogeneity in the reproductive outputs. 相似文献
This paper presents a 3D model in sigma coordinates. Although the principles it is based on have been established for some time, some original aspects for this type of 3D mode splitting model are presented here. The model was designed to simulate flows in various coastal areas from the regional scale down to the inshore scale of small bays or estuaries where circulation is generally driven by a mix of processes. The processes to be modeled enable simplifications of the Navier–Stokes equations on the classic Boussinesq and hydrostatic hypotheses. These equations are transformed within a sigma framework to make free surface processing easier. The main point of our demonstration focuses on the original aspect of the coupling between barotropic and baroclinic modes especially designed for ADI. It explains how full consistency of the transport calculated within the 2D and 3D equation sets was obtained. Lastly, we describe the physical processes simulated on a realistic configuration at a regional scale in the Bay of Biscay. 相似文献
The ODP leg 161 Site 976 (Alboran Sea) is a deep-sea section sampled at a water depth of 1108 m in the Western Mediterranean Sea. Pollen analysis provides a vegetation and climate record of the Mid Pleistocene Transition (MPT), roughly one million years ago. The age-model tied to biostratigraphic events was revised by aligning the pollen climate index (PCI) to Mediterranean (KC01b) and global (LR04) oxygen isotope records. The studied time slice spans the interval ~1.09 Ma (MIS 31) to ~0.90 Ma (MIS 23).Across this interval, past phytogeography of nowadays extinct taxa, which were rare, allows a successful application of the modern analogues technique (MAT) to quantitative climate reconstructions for the MPT. Five, long-term, obliquity-related vegetation successions (O1 to O5), and eight short-term, precession-related vegetation successions (P1 to P8) are observed within the studied interval. These vegetation successions, regardless of their duration, show the same pattern: the progressive replacement of temperate trees by mountainous taxa, and then by herbs and steppe maxima. Precession-related successions correspond, therefore, to as dramatic vegetation changes as those driven by obliquity, including a final steppe phase under deteriorated climate conditions.Wavelet analysis of the PCI record shows that the Western Mediterranean experienced a shift at 1.01 Ma from precession-dominated frequencies (1.05–1.01 Ma) to obliquity-dominated frequencies (1.01–0.9 Ma). There is, therefore, an apparent discrepancy between wavelet analysis results and vegetation dynamic analysis (which suggests that obliquity and precession are recorded throughout the entire studied interval). This discrepancy could result from the fact that the PCI record sums, somehow, similar vegetation changes (wet to dry) occurring at different periodicities. Such a complex vegetation dynamics is mathematically rendered through a single parameter (i.e. principal component), which does not successfully catch the subtle combinations of variability occurring at two close periodicities. Furthermore, the pollen-inferred Early Pleistocene vegetation dynamic (and climate) of the Western Mediterranean region does not show a decrease of the obliquity response relative to the precession response at the onset of the MPT. 相似文献
Following the 2010 VEI 4 eruption of Merapi volcano, more than 250 lahars were triggered during two rainy seasons from October 2010 to March 2012. This high number of post-eruption lahars mainly occurred in the Kali (valley) Putih watershed and was mostly associated with high-magnitude rainstorms. A lahar occurring on January 8, 2011, caused significant damage to homes in several communities, bridges, sabo dams, and agricultural crops. The aims of this contribution are to document the impacts of lahars on the Kali Putih watershed and specifically (1) to analyze the lahar frequency during the period of 1969–2012 on an inter-annual and intra-annual basis and to determine the link between the volume of tephra and the frequency of lahars; (2) to detail the lahar trajectory and channel evolution following the January 8th lahar; (3) to map the spatial distribution of the thickness and geomorphic effects of the lahar deposit; and (4) to determine the impacts of the lahar on the infrastructure (sabo dams and roads) and settlements in the distal area of the volcano. The Kali Putih watershed has experienced 62 lahars, which represent 22% of all lahars triggered on 17 rivers at Merapi between 2010 and 2012. The main geomorphic impacts are: (1) excessive sedimentation in valleys, settlements and agricultural areas; (2) undercutting of the river banks by as much as 50 m, accompanied by channel widening; and (3) abrupt changes in the river channel direction in the distal area (15–20 km downstream of the volcano). About 19 sabo dams were damaged, and 3 were totally destroyed. Over 307 houses were damaged, and the National Road Yogyakarta–Semarang was regularly cut (18 times during approximately 25 days). Although the sabo dams on Kali Putih were originally constructed to protect distal areas from lahar damage, they had little effect on the 2010–2012 rain-triggered lahars. The underlying design of those dams along this river is one of the main reasons for the major destruction in this sector of the volcano’s lower slope. The catch basin capacity of the sabo dam was only 1.75?×?106 m3, whereas the total volume of the 2010–2011 lahars exceeded 5?×?106 m3. In order to prepare for future lahars, the government has invested in significant mitigation measures, ranging from structural approaches (e.g., building new sabo dams and developing an early warning system) to non-structural approaches (e.g., contingency and preparedness planning and hazard education).