首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   8篇
测绘学   8篇
大气科学   12篇
地球物理   36篇
地质学   55篇
海洋学   18篇
天文学   18篇
自然地理   28篇
  2024年   2篇
  2023年   2篇
  2022年   6篇
  2021年   9篇
  2020年   15篇
  2019年   6篇
  2018年   7篇
  2017年   8篇
  2016年   13篇
  2015年   4篇
  2014年   11篇
  2013年   7篇
  2012年   10篇
  2011年   9篇
  2010年   9篇
  2009年   11篇
  2008年   10篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1997年   3篇
排序方式: 共有175条查询结果,搜索用时 203 毫秒
91.
Eulerian-Lagrangian and Modified Method of Characteristics (MMOC) procedures provide computationally efficient techniques for approximating the solutions of transport-dominated diffusive systems. The original MMOC fails to preserve certain integral identities satisfied by the solution of the differential system; the recently introduced variant, called the MMOCAA, preserves the global form of the identity associated with conservation of mass in petroleum reservoir simulations, but it does not preserve a localized form of this identity. Here, we introduce an Eulerian-Lagrangian method related to these MMOC procedures that guarantees conservation of mass locally for the problem of two-phase, immiscible, incompressible flow in porous media. The computational efficiencies of the older procedures are maintained. Both the original MMOC and the MMOCAA procedures for this problem are derived from a nondivergence form of the saturation equation; the new method is based on the divergence form of the equation. A reasonably extensive set of computational experiments are presented to validate the new method and to show that it produces a more detailed picture of the local behavior in waterflooding a fractally heterogeneous medium. A brief discussion of the application of the new method to miscible flow in porous media is included. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
92.
We study the applicability of a model order reduction technique to the solution of transport of passive scalars in homogeneous and heterogeneous porous media. Transport dynamics are modeled through the advection-dispersion equation (ADE) and we employ Proper Orthogonal Decomposition (POD) as a strategy to reduce the computational burden associated with the numerical solution of the ADE. Our application of POD relies on solving the governing ADE for selected times, termed snapshots. The latter are then employed to achieve the desired model order reduction. We introduce a new technique, termed Snapshot Splitting Technique (SST), which allows enriching the dimension of the POD subspace and damping the temporal increase of the modeling error. Coupling SST with a modeling strategy based on alternating over diverse time scales the solution of the full numerical transport model to its reduced counterpart allows extending the benefit of POD over a prolonged temporal window so that the salient features of the process can be captured at a reduced computational cost. The selection of the time scales across which the solution of the full and reduced model are alternated is linked to the Péclet number (P e), representing the interplay between advective and dispersive processes taking place in the system. Thus, the method is adaptive in space and time across the heterogenous structure of the domain through the combined use of POD and SST and by way of alternating the solution of the full and reduced models. We find that the width of the time scale within which the POD-based reduced model solution provides accurate results tends to increase with decreasing P e. This suggests that the effects of local-scale dispersive processes facilitate the POD method to capture the salient features of the system dynamics embedded in the selected snapshots. Since the dimension of the reduced model is much lower than that of the full numerical model, the methodology we propose enables one to accurately simulate transport at a markedly reduced computational cost.  相似文献   
93.
Natural Hazards - This article analyzes the short-term economic impacts of the collapse of the ‘Fundão’ mining tailings dam, located in the Brazilian state of Minas Gerais. This...  相似文献   
94.
Natural Hazards - After a storm displaced the P-70 platform ship located in Guanabara Bay to the coast on January 30, 2020, a numerical investigation was carried out with the BRAMS (Brazilian...  相似文献   
95.
We compared the distribution and seasonal fluctuations in the aquatic biota in relation to chemical and physical water variables in the Altiplano watersheds of the Ascotán, Carcote and Huasco salars; Chungará and Cotacotani lakes; Isluga and Lauca Rivers and the Parinacota wetland. We sampled during the austral autumn–winter of 2006 and in the spring–summer of 2006–2007, using three sampling stations for each system. We used canonical correspondence analysis to establish relations between frequency of taxa and environmental variables.We demonstrate that the structure and composition of the aquatic biota in humid areas of the Altiplano is determined by physical and chemical variables of the water. The most relevant one is total nitrogen, which is also the limiting nutrient for phytoplankton production in tropical systems.Benthos and zooplankton showed significant associations with the set of environmental variables (Monte Carlo test, p<0.05); however, the association was not significant for phytoplankton. Lake Chungará showed the greatest variation in composition and abundance of zooplankton between autumn-winter and spring-summer, while in the Huasco salar the physical and chemical characteristics were related to the composition and abundance of the benthonic fauna. Thus, changes in the water volume of these systems would have repercussions in chemical and physical variables, altering the species assemblage and possibly the efficiency and stability of ecosystem functions.  相似文献   
96.
Physical modelling of cracked/fractured media using downscaled laboratory experiments has been used with great success as a useful alternative for understanding the effect of anisotropy in the hydrocarbon reservoir characterization and in the crustal and mantle seismology. The main goal of this work was to experimentally verify the predictions of effective elastic parameters in anisotropic cracked media by Hudson and Eshelby–Cheng's effective medium models. For this purpose, we carried out ultrasonic measurements on synthetic anisotropic samples with low crack densities and different aspect ratios. Twelve samples were prepared with two different crack densities, 5% and 8%. Three samples for each crack density presented cracks with only one crack aspect ratio, whereas other three samples for each crack density presented cracks with three different aspect ratios in their composition. It results in samples with aspect ratio values varying from 0.13 to 0.26. All the cracked samples were simulated by penny‐shaped rubber inclusions in a homogeneous isotropic matrix made with epoxy resin. Moreover, an isotropic sample for reference was constructed with epoxy resin only. Regarding velocity predictions performed by the theoretical models, Eshelby–Cheng shows a better fit when compared with the experimental results for samples with single and mix crack aspect ratio (for both crack densities). From velocity values, our comparisons were also performed in terms of the ε, γ, and δ parameters (Thomsen parameters). The results show that Eshelby–Cheng effective medium model fits better with the measurements of ε and γ parameters for crack samples with only one type of crack aspect ratio.  相似文献   
97.
Stochastic Environmental Research and Risk Assessment - The Brazilian Interconnected Power System is hydro dominated and characterized by large reservoirs presenting multi-year regulation...  相似文献   
98.
During exploration and pre-feasibility studies of a typical petroleum project many analyses are required to support decision making. Among them is reservoir lithofacies modeling, preferably using uncertainty assessment, which can be carried out with geostatistical simulation. The resulting multiple equally probable facies models can be used, for instance, in flow simulations. This allows assessing uncertainties in reservoir flow behavior during its production lifetime, which is useful for injector and producer well planning. Flow, among other factors, is controlled by elements that act as flow corridors and barriers. Clean sand channels and shale layers are examples of such reservoir elements that have specific geometries. Besides simulating the necessary facies, it is also important to simulate their shapes. Object-based and process-based simulations excel in geometry reproduction, while variogram-based simulations perform very well at data conditioning. Multiple-point geostatistics (MPS) combines both characteristics, consequently it was employed in this study to produce models of a real-world reservoir that are both data adherent and geologically realistic. This work aims at illustrating how subsurface information typically available in petroleum projects can be used with MPS to generate realistic reservoir models. A workflow using the SNESIM algorithm is demonstrated incorporating various sources of information. Results show that complex structures (e.g. channel networks) emerged from a simple model (e.g. single branch) and the reservoir facies models produced with MPS were judged suitable for geometry-sensitive applications such as flow simulations.  相似文献   
99.
Chaotic advection is a novel approach that has the potential to enhance contact between an injected reagent and target contaminants, and thereby improve the effectiveness of in situ treatment technologies. One configuration that is capable of generating chaotic advection is termed the rotated potential mixing (RPM) flow. A conventional RPM flow system involves periodically reoriented dipole flow driven by transient switching of pressures at a series of radial wells. To determine whether chaotic advection can be engineered using such an RPM flow system, and to assess the consequent impact on the spatial distribution of a conservative tracer, a series of field-scale experiments were conducted. These experiments involved the injection of a tracer in the center of a circular array of wells followed by either mixing using an engineered RPM flow system to invoke chaotic advection, or by natural processes (advection and diffusion) as the control. Pressure fluctuations from the mixing tests using the RPM flow system showed consistent peak amplitudes during injection and extraction at a frequency corresponding to the switching time, suggesting that the target hydraulic behavior was achieved with the time-dependent flow field. The tracer breakthrough responses showed oscillatory behavior at all monitoring locations during the mixing tests which indicated that the desired RPM flow was generated. The presence of chaotic advection was supported by comparisons to observations from a previous laboratory experiment using RPM flow, and the Fourier spectrum of the temporal tracer data. Results from several quantitative metrics adopted to demonstrate field-scale evidence of chaotic advection showed that mixing led to improved lateral tracer spreading and approximately uniform concentrations across the monitoring network. The multiple lines of evidence assembled in this proof-of-concept study conclusively demonstrated that chaotic advection can be engineered at the field scale. This investigation is a critical step in the development of chaotic advection as a viable and efficient approach to enhance reagent delivery.  相似文献   
100.
The presented work describes a methodology that employs artificial neural networks (ANN) and multi-temporal imagery from the MODIS/Terra-Aqua sensors to detect areas of high risk of forest fire in the Brazilian Amazon. The hypothesis of this work is that due to characteristic land use and land cover change dynamics in the Amazon forest, forest areas likely to be burned can be separated from other land targets. A study case was carried out in three municipalities located in northern Mato Grosso State, Brazilian Amazon. Feedforward ANNs, with different architectures, were trained with a backpropagation algorithm, taking as inputs the NDVI values calculated from MODIS imagery acquired during five different periods preceding the 2005 fire season. Selected samples were extracted from areas where forest fires were detected in 2005 and from other non-burned forest and agricultural areas. These samples were used to train, validate and test the ANN. The results achieved a mean squared error of 0.07. In addition, the model was simulated for an entire municipality and its results were compared with hotspots detected by the MODIS sensor during the year. A histogram analysis showed that the spatial distribution of the areas with fire risk were consistent with the fire events observed from June to December 2005. The ANN model allowed a fast and relatively precise method to predict forest fire events in the studied area. Hence, it offers an excellent alternative for supporting forest fire prevention policies, and in assisting the assessment of burned areas, reducing the uncertainty involved in currently used methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号