首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   12篇
  国内免费   5篇
测绘学   3篇
大气科学   4篇
地球物理   31篇
地质学   44篇
海洋学   4篇
天文学   4篇
综合类   3篇
自然地理   2篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   10篇
  2019年   7篇
  2018年   12篇
  2017年   13篇
  2016年   11篇
  2015年   8篇
  2014年   12篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2007年   1篇
  2005年   1篇
  1997年   1篇
排序方式: 共有95条查询结果,搜索用时 31 毫秒
91.
Badab Sourt travertine‐depositing springs in the north of Iran, naturally create a unique surreal landscape containing a range of stepped travertine terraces, similarly found only in a few other places on earth. This site comprises of three travertine saline springs with different values of salinity and discharge (SP1, SP2, and SP3) and one non‐travertine fresh karstic spring (SP4) within a distance of about 300 m. The etiology behind this salinity and the water origin are the main research's dilemma that were investigated using geological, hydrochemical, and stable isotopic techniques. Based on the topography and isotopic results, the carbonate formations in northern (Khoshyeilagh and Mobarak) and southern (Cretaceous limestone) parts of the springs potentially provide the initial hydraulic gradient for deep circulation of the water and CO2. However, geological studies indicate that the hydraulic connectivity of the Cretaceous formation to the travertine springs is interrupted by impermeable geological formations. Based on the proposed conceptual hydrogeological model and mass balance calculations, the SP4 spring is locally recharged from the nearby karstic area of Khoshyeilagh formation through shallow, short and steep groundwater flow circulation that is completely different from the travertine springs. The travertine spring (SP1) is recharged from more distant areas having higher altitudes on Mobarak and Khoshyeilagh limestone and circulate more deeply before emerging on the surface. The SP2 and SP3 springs can derive from the mixing of the saline water (SP1) and fresh water (SP4). The dissolution of interlayers of halite in Shemshak formation is concluded as the main source of salinity. This is the first research article in detail to survey hydrogeology of the travertine springs in Iran.  相似文献   
92.
93.
We have used stable water isotopes (δ18O, δ2H) in combination with lumped-parameter modeling for characterizing unsaturated flow in two lysimeters vegetated with maize. The lysimeters contained undisturbed soil cores dominated by sandy gravel (Ly1) and clayey sandy silt (Ly2). Stable water isotopes were analyzed in precipitation and lysimeter outflow water over about 3 years. The mean transit time of water T and dispersion parameter PD, obtained from modeling, were higher for the silt soil in Ly2 than for the gravel soil in Ly1 (T of 362 vs. 129 d, PD of 0.7 vs. 0.12). The consideration of preferential flow (PF) paths could substantially improve the model curve fits, with 13 and 11% contribution of PF for Ly1 and Ly2 as best estimates. Different assumptions were compared to estimate the input function, that is, stable water isotope content in the recharging water. Using the isotopic composition of precipitation as input (no modification) resulted in reasonable model estimations. Best model fits for the entire observation were obtained by weighting the recharging isotopes according to average precipitation within periods of 3 and 6 months, in correspondence to changing vegetation phases and seasonal influences. Input functions that consider actual evapotranspiration could significantly improve modeling at some periods, however, this led to deviations between modeled and observed δ18O at other periods. This may indicate the influence of variable flow, so that dividing the whole observation period into hydraulically characteristic sub-periods for lumped-parameter modeling (which implements steady-state flow) is recommended for possible further improvement.  相似文献   
94.
Natural Hazards - Flood risk maps for the built environment can be obtained by integrating geo-spatial information on hazard, vulnerability and exposure. They provide precious support for strategic...  相似文献   
95.
ABSTRACT

Mashhad granitoids and associated mafic microgranular enclaves (MMEs), in NE Iran record late early Mesozoic magmatism, was related to the Palaeo-Tethys closure and Iran-Eurasia collision. These represent ideal rocks to explore magmatic processes associated with Late Triassic closure of the Palaeo-Tethyan ocean and post-collisional magmatism. In this study, new geochronological data, whole-rock geochemistry, and Sr–Nd isotope data are presented for Mashhad granitoids and MMEs. LA–ICP–MS U–Pb dating of zircon yields crystallization ages of 205.0 ± 1.3 Ma for the MMEs, indicating their formation during the Late Triassic. This age is similar to the host granitoids. Our results including the major and trace elements discrimination diagrams, in combination with field and petrographic observations (such as ellipsoidal MMEs with feldspar megacrysts, disequilibrium textures of plagioclase), as well as mineral chemistry, suggest that MMEs formed by mixing of mafic and felsic magmas. The host granodiorite is a felsic, high K calc-alkaline I-type granitoid, with SiO2 = 67.5–69.4 wt%, high K2O (2.4–4.2 wt%), and low Mg# (42.5–50.5). Normalized abundances of LREEs and LILEs are enriched relative to HREEs and HFSEs (e.g. Nb, Ti). Negative values of whole-rock εNd(t) (?3 to ?2.3) from granitoids indicate that the precursor magma was generated by partial melting of enriched lithospheric mantle with some contributions from old lower continental crust. In the MMEs, SiO2 (53.4–58.2 wt%) is lower and Ni (3.9–49.7 ppm), Cr (0.8–93.9 ppm), Mg# (42.81–62.84), and εNd(t) (?2.3 to +1.4) are higher than those in the host granodiorite, suggesting a greater contribution of mantle-derived mafic melts in the genesis of MMEs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号