首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   710篇
  免费   6篇
  国内免费   9篇
测绘学   3篇
大气科学   103篇
地球物理   128篇
地质学   216篇
海洋学   31篇
天文学   168篇
综合类   4篇
自然地理   72篇
  2023年   4篇
  2022年   4篇
  2021年   10篇
  2020年   9篇
  2019年   6篇
  2018年   13篇
  2017年   12篇
  2016年   11篇
  2015年   10篇
  2014年   20篇
  2013年   35篇
  2012年   14篇
  2011年   29篇
  2010年   16篇
  2009年   27篇
  2008年   22篇
  2007年   33篇
  2006年   29篇
  2005年   19篇
  2004年   31篇
  2003年   25篇
  2002年   19篇
  2001年   29篇
  2000年   23篇
  1999年   20篇
  1998年   14篇
  1997年   12篇
  1996年   17篇
  1995年   14篇
  1994年   18篇
  1993年   7篇
  1992年   9篇
  1991年   10篇
  1990年   9篇
  1989年   7篇
  1988年   7篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   14篇
  1983年   11篇
  1981年   5篇
  1979年   8篇
  1978年   8篇
  1977年   6篇
  1976年   6篇
  1975年   7篇
  1974年   6篇
  1973年   8篇
  1971年   12篇
排序方式: 共有725条查询结果,搜索用时 0 毫秒
691.
The 17–28 μm brightness temperature of the center of the disk of Jupiter is 136 ± 4 K. Model calculations yield an effective temperature of 142 ± 4 K at the center of the disk for a helium to hydrogen ratio He/H2 of 0. This corresponds to an effective temperature of the entire disk of 136 ± 5 K. The NEB, SEB, and STeB are shown to emit an excess flux at 20 μm when compared to the neighboring zones. The hot belts were grey in color at the time of the observations and were the source of excess 5-μm flux as well (Keay et al. 1973). The relationships between 5-μm and 20-μm flux excesses and the cloud structures are discussed.  相似文献   
692.
We report results from a third sample of quasar absorption line spectra from the Keck telescope which has been studied to search for any possible variation of the fine structure constant, α. This third sample, which is larger than the sum of the two previously published samples, shows the same effect, and also gives, as do the previous two samples, a significant result. The combined sample yields a highly significant effect, Δα = (αz - α0 )/α0 = -0.57 ± 0.10 × 10-5, averaged over the redshift range 0.2 < z < 3.7. We include a brief discussion of small-scale kinematic structure in quasar absorbing clouds. However, kinematics are unlikely to impact significantly on the averagednon-zeroΔα /α above, and we have so far been unable to identify any systematic effect which can explain it. New measurements of quasar spectra obtained using independent instrumentation and telescopes are required to properly check the Keck results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
693.
694.
695.
We review our procedures for selecting, preparing and analyzing meteorite samples, present new analyses of 16 ordinary chondrites, and discuss variations of Fe, S and Si in the L-group. A tendency for Fe/Mg, S/Mg and Si/Mg to be low in L chondrites of fades d to f testifies that post-metamorphic shock melting played a significant role in the chemical diversification of the L-group. However, these ratios also vary widely and sympathetically in melt-free chondrites, indicating that much of the L-group's chemical variation arose prior to thermal metamorphism and is in that sense primary. If all L-chondrites come from one parent body, type-correlated chemical trends suggest: 1) that the body had a traditional “onion skin” structure, with metamorphic intensity increasing with depth; and 2) that it formed from material that became more homogeneous, slightly poorer in iron, and significantly richer in sulfur as accretion proceeded.  相似文献   
696.
The Colony meteorite is an accretionary breccia containing several millimeter-to centimeter-size chondritic clasts embedded in a chondritic host. Colony is one of the least equilibrated CO3 chondrites; it has an unrecrystallized texture and contains compositionally heterogeneous olivine and low-Ca pyroxene, kamacite with low Ni and Co and high Cr, amoeboid inclusions with low FeO and MnO, a fine-grained silicate matrix with very high FeO, and numerous small chondrules with clear pink glass. However, Colony differs from normal CO chondrites in several respects: Although Al, Sc, V, Cr, Ir, Fe, Au and Ga abundances are consistent with a CO chondrite classification, certain lithophiles (Mg and Mn), siderophiles (Ni and Co) and chalcophiles (Se and Zn) are depleted by factors of 10–40%. The shape of Colony's thermoluminescence (TL) glow curve is similar to that of Allan Hills A77307 (another unequilibrated chondrite with CO3 petrological characteristics) and different from those of normal CO chondrites. [ALHA77307 also resembles Colony in having low Mg, Mn, Ni and Co, compared to normal CO chondrites, but it possesses CO-CV levels of Se and Zn and nearly CV levels of Cd.] Colony is badly weathered; it contains 22.7 wt.% Fe2O3 and 5.7 wt.% H2O. Recalculating the analysis on an H2O-free basis with all Fe2O3, NiO and CoO converted to metal, yields an inferred original metallic Fe, Ni abundance of ~ 19 wt.%. This is similar to that of Kainsaz (an unweathered CO3 fall), but much higher than that of all other CO3 chondrites (< 6.3 wt.%). Although it is possible that Colony and either ALHA77307 or Kainsaz constitute distinct CO3 chemical subgroups, the weathered nature of Colony and ALHA77307 preclude the drawing of firm conclusions. Nevertheless, it is clear that CO3 chondrites vary more in compositional and petrological properties than was previously recognized.  相似文献   
697.
Eugene I. Smith 《Icarus》1976,28(4):543-550
New central peak-crater size data for Mars shows that a higher percentage of relatively unmodified Martian craters have central peaks than do fresh lunar craters below a diameter of 30 km. For example, in the diameter range 10 to 20 km, 60% of studied Martian craters have central peaks compared to 26% for the Moon. Gault et al. (1975, J. Geophys. Res.80, 2444–2460) have demonstrated that central peaks occur in smaller craters on Mercury than on the Moon, and that this effect is due to the different gravity fields in which the craters formed. Similar differences when comparing Mars and the Moon show that gravity has affected the diameter at which central peaks form on Mars. Erosion on Mars, therefore, does not completely mask differences in crater interior structure that are caused by differences in gravity. Effects of Mars' higher surface gravity when compared to the Moon are not detected when comparing terrace and crater shape data. The morphology-crater size statistics also show that a full range of crater shapes occur on Mars, and craters tend to become more morphologically complex with increasing diameter. Comparisons of Martian and Mercurian crater data show differences which may be related to the greater efficacy of erosion on Mars.  相似文献   
698.
The principal data are collected about the fall and the distribution of the fragments of the Valdinizza, Italy, meteorite. A complete individual, weighing 872 g, preserved in the United States National Museum, Washington, D. C., is described in some detail. The mineralogical composition is olivine, Fa25; hypersthene, Fs23; plagioclase, An10; maskelynite; nickel-iron; troilite; chromite; ilmenite and possibly a phosphate mineral. Valdinizza is a fairly typical hypersthene chondrite, belonging to the type 6 chondrites of Van Schmus and Wood (1967); its structure shows evidence of a period of high-temperature recrystallization; interesting features of shock-metamorphism are notable, the microtexture deformations suggesting a high level of stress  相似文献   
699.
Asteroid 1976 AA was discovered as a result of a continuing systematic search for planet-crossing asteroids. It is the first asteroid to be thoroughly investigated by means of photometry and radiometry on its discovery apparition. It is also the first asteroid found with a semimajor axis and period less than that of the Earth and the first Earth-crossing asteroid which does not cross the orbit of either Mars or Venus. We estimate that there might be several tens of objects to absolute magnitude 18, which are exclusively Earth crossing. Some of these objects might be exceptionally easy to reach by spacecraft.  相似文献   
700.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号