首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   12篇
  国内免费   5篇
测绘学   2篇
大气科学   12篇
地球物理   19篇
地质学   71篇
海洋学   12篇
天文学   19篇
自然地理   12篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   6篇
  2019年   3篇
  2018年   10篇
  2017年   5篇
  2016年   11篇
  2015年   5篇
  2014年   9篇
  2013年   9篇
  2012年   8篇
  2011年   14篇
  2010年   8篇
  2009年   7篇
  2008年   6篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1988年   2篇
  1987年   1篇
  1981年   1篇
排序方式: 共有147条查询结果,搜索用时 296 毫秒
91.
Contiguous sampling of ice spanning key intervals of the deglaciation from the Greenland ice cores of NGRIP, GRIP and NEEM has revealed three new silicic cryptotephra deposits that are geochemically similar to the well‐known Borrobol Tephra (BT). The BT is complex and confounded by the younger closely timed and compositionally similar Penifiler Tephra (PT). Two of the deposits found in the ice are in Greenland Interstadial 1e (GI‐1e) and an older deposit is found in Greenland Stadial 2.1 (GS‐2.1). Until now, the BT was confined to GI‐1‐equivalent lacustrine sequences in the British Isles, Sweden and Germany, and our discovery in Greenland ice extends its distribution and geochemical composition. However, the two cryptotephras that fall within GI‐1e ice cannot be separated on the basis of geochemistry and are dated to 14358 ± 177 a b2k and 14252 ± 173 a b2k, just 106 ± 3 years apart. The older deposit is consistent with BT age estimates derived from Scottish sites, while the younger deposit overlaps with both BT and PT age estimates. We suggest that either the BT in Northern European terrestrial sequences represents an amalgamation of tephra from both of the GI‐1e events identified in the ice‐cores or that it relates to just one of the ice‐core events. A firm correlation cannot be established at present due to their strong geochemical similarities. The older tephra horizon, found within all three ice‐cores and dated to 17326 ± 319 a b2k, can be correlated to a known layer within marine sediment cores from the North Iceland Shelf (ca. 17179‐16754 cal a BP). Despite showing similarities to the BT, this deposit can be distinguished on the basis of lower CaO and TiO2 and is a valuable new tie‐point that could eventually be used in high‐resolution marine records to compare the climate signals from the ocean and atmosphere.  相似文献   
92.
93.
Samples were collected during one annual cycle (April 2007–March 2008) at Alfacs Bay (NW Mediterranean Sea) central station in order to assess the influence of organic nutrients in the growth of the microalgae assemblage, with special reference to Pseudo-nitzschia spp. This potentially toxic diatom forms natural and recurrent blooms in the study area. To assess further the relationship between Pseudo-nitzschia spp. and nutrients an enrichment experiment with high molecular weight dissolved organic matter (HMWDOM) was performed with field samples obtained during a Pseudo-nitzschia spp. bloom. HMWDOM was extracted from water collected at Alfacs Bay. Five bioassays were prepared: N + P (seawater with addition of nitrate and phosphate), DOM (addition of HMWDOM), (−N + P) + DOM (nitrogen deficient, with addition of phosphate and HMWDOM), (N + P) + DOM (addition of nitrate, phosphate and HMWDOM), seawater control (without added nutrients), and B + DOM (control of bacteria, without microalgae). The experiment was run in batch mode over 4 days. Results from the field study revealed that the concentrations of organic nutrients mostly surpassed the inorganic pool. Pseudo-nitzschia spp. was the most frequent and abundant taxa of the microalgae community. The micro-planktonic assemblage was arranged according to a seasonal factor (ANOSIM and cluster analysis). DON, nitrate and silicate were the most important abiotic parameters contributing to the dissimilarities between seasons (SIMPER analysis) and thereby potentially influencing the seasonal distribution of microalgae in the representative station. In the experimental investigation, Pseudo-nitzschia cells increased by the end of the experiment in the DOM bioassay but no respective increase was observed for chlorophyll a. This could point to an acquisition of nutrients through the DOM fraction that would conjointly reduce the need of chlorophyll a. The data obtained suggest that organic nutrients may exert an important role in the development of microalgae, including Pseudo-nitzschia spp., in the selected location.  相似文献   
94.
Turbidite sandstones of the Miocene Marnoso‐arenacea Formation (northern Apennines, Italy) display centimetre to decimetre long, straight to gently curved, 0·5 to 2·0 cm regularly spaced lineations on depositional (stratification) planes. Sometimes these lineations are the planform expression of sheet structures seen as millimetre to centimetre long vertical ‘pillars’ in profile. Both occur in the middle and upper parts of medium‐grained and fine‐grained sandstone beds composed of crude to well‐defined stratified facies (including corrugated, hummocky‐like, convolute, dish‐structured and dune stratification) and are aligned sub‐parallel to palaeoflow direction as determined from sole marks often in the same beds. Outcrops lack a tectonic‐related fabric and therefore these structures may be confidently interpreted to be sedimentary in origin. Lineations resemble primary current lineations formed by the action of turbulence during bedload transport under upper stage plane bed conditions. However, they typically display a larger spacing and micro‐topography compared to classic primary current lineations and are not associated with planar‐parallel, finely laminated sandstones. This type of ‘enhanced lineation’ is interpreted to develop by the same process as primary current lineations, but under relatively high near‐bed sediment concentrations and suspended load fallout rates, as supported by laboratory experiments and host facies characteristics. Sheets are interpreted to be dewatering structures and their alignment to palaeoflow (only noted in several other outcrops previously) inferred to be a function of vertical water‐escape following the primary depositional grain fabric. For the Marnoso‐arenacea beds, sheet orientation may be linked genetically to the enhanced primary current lineation structures. Current‐aligned lineation and sheet structures can be used as palaeoflow indicators, although the directional significance of sheets needs to be independently confirmed. These indicators also aid the interpretation of dewatered sandstones, suggesting sedimentation under a traction‐dominated depositional flow – with a discrete interface between the aggrading deposit and the flow – as opposed to under higher concentration grain or hindered‐settling dominated regimes.  相似文献   
95.
96.
The geochemical evolution of two acid mine effluents in Tharsis and La Zarza-Perrunal mines (Iberian Pyrite Belt, Huelva, Spain) has been investigated. In origin, these waters present a low pH (2.2 and 3.1) and high concentrations of dissolved sulphate and metals (Fe, Al, Mn, Cu, Zn, As, Cd, Co, Cr, Ni). However, the natural evolution of these acidic waters (which includes the bacterial oxidation of Fe(II) and the subsequent precipitation of Fe(III) minerals) represents an efficient mechanism of attenuation. This self-mitigating process is evidenced by the formation of schwertmannite, which retains most of the iron load and, by sorption, toxic trace elements like As. The later mixing with pristine waters rises the pH and favours the total precipitation of Fe(III) at pH 3.5 and, subsequently, Al compounds at pH 4.5, along with the sorption of trace metals (Mn, Zn, Cu, Cd, Co, Ni) until chemical equilibrium at circumneutral conditions is achieved.  相似文献   
97.
Calculated phase equilibria among the minerals sodic amphibole, calcic amphibole, garnet, chloritoid, talc, chlorite, paragonite, margarite, omphacite, plagioclase, carpholite, zoisite/clinozoisite, lawsonite, pyrophyllite, kyanite, sillimanite, quartz and H2O are presented for the model system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O (NCFMASH), which is relevant for many greenschist, blueschist, amphibolite and eclogite facies rocks. Using the activity-composition relationships for multicomponent amphiboles constrained by Will and Powell (1992), equilibria containing coexisting calcic and sodic amphiboles could be determined. The blueschist–greenschist transition reaction in the NCFMASH system, for example, is defined by the univariant reaction sodic amphibole + zoisite = calcic amphibole + chlorite + paragonite + plagioclase (+ quartz + H2O) occurring between approximately 420 and 450 °C at 9.5 to 10 kbar. The calculated petrogenetic grid is a valuable tool for reconstructing the PT-evolution of metabasic rocks. This is shown for rocks from the island of Samos, Greece. On the basis of mineral and whole rock analyses, PT-pseudosections were calculated and, together with the observed mineral assemblages and reaction textures, are used to reconstruct PT-paths. For rocks from northern Samos, pseudomorphs after lawsonite preserved in garnet, the assemblage sodic amphibole-garnet-paragonite-chlorite-zoisite-quartz and the retrograde appearance of albitic plagioclase and the formation of calcic amphibole around sodic amphibole constrain a clockwise PT-path that reaches its thermal maximum at some 520 °C and 19 kbar. The derived PT-trajectory indicates cooling during exhumation of the rocks and is similar to paths for rocks from the western part of the Attic-Cycladic crystalline complex. Rocks from eastern Samos indicate lower pressures and are probably related to high-pressure rocks from the Menderes Massif in western Turkey. Received: 8 July 1997 / Accepted: 11 February 1998  相似文献   
98.
99.
Many models of river meander migration rely upon a simple formalism, whereby the eroding bank is cut back at a rate that is dictated by the flow, and the depositing bank then migrates passively in response, so as to maintain a constant bankfull channel width. Here a new model is presented, in which separate relations are developed for the migration of the eroding bank and the depositing bank. It is assumed that the eroding bank consists of a layer of fine‐grained sediment that is cohesive and/or densely riddled with roots, underlain by a purely noncohesive layer of sand and/or gravel. Following erosion of the noncohesive layer, the cohesive layer fails in the form of slump blocks, which armor the noncohesive layer and thereby moderate the erosion rate. If the slump block material breaks down or is fluvially entrained, the protection it provides for the noncohesive layer diminishes and bank erosion is renewed. Renewed bank erosion, however, rejuvenates slump block armoring. At the depositing bank, it is assumed that all the sediment delivered to the edge of vegetation due to the transverse component of sediment transport is captured by encroaching vegetation, which is not removed by successive floods. Separate equations describing the migration of the eroding and depositing banks are tied to a standard morphodynamic formulation for the evolution of the flow and bed in the central region of the channel. In this model, the river evolves toward maintenance of roughly constant bankfull width as it migrates only to the extent that the eroding bank and depositing bank ‘talk’ to each other via the medium of the morphodynamics of the channel center region. The model allows for both (a) migration for which erosion widens the channel, forcing deposition at the opposite bank, and (b) migration for which deposition narrows the channel forcing erosion at the opposite bank. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
100.
The stratigraphic record of the Middle and Upper Jurassic in the Western Tethys is characterized by successive eustatic and tectonic events recorded as stratigraphic unconformities, which are revealed by hardgrounds, palaeokarsts, palaeosoils, and by the deposition of Fe–Mn crusts. The study of a Mn crust from the Middle-Upper Jurassic discontinuity in the Jbel Moussa Group (Rifian Cordillera), from stratigraphic, geomicrobiologic, mineralogical, and geochemical standpoints allows us to establish its hydrothermal origin. The manganese crust is composed by Ca-birnessite, cryptomelane and coronadite. Major- and trace-elements analyses of the whole crust show high contents in MnO (> 70 wt.%), a negative Ce anomaly and a positive Eu anomaly. Analysis of the microstructures under scanning electron microscopy reveals crystalline and microbial laminations, probably owing to fungal mycelium. Mineralogical and geochemical composition, together with microbial structures, suggest that this Mn crust formed as a result of venting hydrothermal fluids through synsedimentary faults. Chemosynthetic microbes were probably involved in the precipitation of Mn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号