首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   0篇
  国内免费   2篇
测绘学   1篇
大气科学   14篇
地质学   24篇
海洋学   25篇
天文学   6篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   8篇
  2005年   3篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1985年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
21.
A change in ecosystem types, such as through natural-vegetation-agriculture conversion, alters the surface albedo and triggers attendant shortwave radiative forcing (RF). This paper describes numerical experiments performed using the climate model (CM) of the Institute of Atmospheric Physics (IAP), Russian Academy of Sciences, for the 16th–21st centuries; this model simulated the response to a change in the contents of greenhouse gases (tropospheric and stratospheric), sulfate aerosols, solar constant, as well as the response to change in surface albedo of land due to natural-vegetation-agriculture conversion. These forcing estimates relied on actual data until the late 20th century. In the 21st century, the agricultural area was specified according to scenarios of the Land Use Harmonization project and other anthropogenic impacts were specified using SRES scenarios. The change in the surface vegetation during conversion from natural vegetation to agriculture triggers a cooling RF in most regions except for those of natural semiarid vegetation. The global and annual average RF derived from the IAP RAS CM in late 20th century is ?0.11 W m?2. Including the land-use driven RF in IAP RAS CM appreciably reconciled the model calculations to observations in this historical period. For instance, in addition to the net climate warming, IAP RAS CM predicted an annually average cooling and reduction in precipitation in the subtropics of Eurasia and North America and in Amazonia and central Africa, as well as a local maximum in annually average and summertime warming in East China. The land-use driven RF alters the sign in the dependence that the amplitude of the annual cycle of the near-surface atmospheric temperature has on the annually averaged temperature. One reason for the decrease in precipitation as a result of a change in albedo due to land use may be the suppression of the convective activity in the atmosphere in the warm period (throughout the year in the tropics) and the corresponding decrease in convective precipitation. In the 21st century, the effect that the land-use driven RF has on the climate response for scenarios of anthropogenic impact is generally small.  相似文献   
22.
23.
The temperature dependence of the methane oxidation rate is estimated. The methane lifetime in the atmosphere is shown to decrease by about 3% from 1900 to 2005. The overwhelming fraction of the total methane content is removed from the atmosphere at intratropical latitudes during the daytime. The methane oxidation rate growth due to the temperature increase in the troposphere generates negative feedback in the methane cycle and, accordingly, climatic feedback with the same sign. According to the estimates performed, the halt in methane concentration growth in the atmosphere observed in recent years can be associated with a decrease in the lifetime of methane in the atmosphere. According to the results of numerical experiments with the climatic model of the Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS), the climatic effect of negative feedback of the tropospheric temperature and the methane lifetime in the atmosphere is not large and is comparable with the climatic forcing of the methane emission growth from bog ecosystems.  相似文献   
24.
Doklady Earth Sciences - A modification of the commonly used Price–Rind scheme for lightning flash frequency (LFF), which can be used in calculations with large spatial and time steps, has...  相似文献   
25.
Observations of the blazar H 1426+428 were carried with on the GT-48 Cerenkov telescope of the Crimean Astrophysical Observatory from April 15 to April 25, 2004. Analysis of the observational data shows an excess of very-high-energy photons (≥1 TeV) in the direction of the source, with a statistical confidence of 5.8 σ. A flash lasting no more than seven days was detected.  相似文献   
26.
Results of direct measurements of the long-wavelength (LW) radiative heat influx (RHI) in the atmospheric surface layer (ASL) are presented. These measurements were performed in August 2003 at the IAP RAS base in Tsimlyansk under the conditions of unstable and stable stratification during a weak wind and a cloudless sky and under nonsteady conditions during cumulus cloudiness in the daytime. The underlying surface was dry steppe with spars grass. The in situ RHI measurements were performed with an original optoacoustic receiver having a quasi-spherical angle of view at heights from 0.15 to 4 m. It is shown that the radiative heating in the ASL was many times the actual heating, especially during near-noon hours. In the daytime, the radiative heating attained its maximum at the heights of measurements 0.15–1 m and decreased with height. The radiative heating at these heights in the near-noon hours was on average about 20 K/h, attaining 60 K/h under a cloudless sky and a weak wind. Under inversion stratification, the radiative cooling usually exceeded the actual cooling, amounting on average from 0 to ?8 K/h and changing with height only slightly. Periods with close (in phase) fluctuations of the radiative and actual cooling, sometimes changing to heating, were observed during the night. Regression equations, showing a high correlation between the RHI values at the heights of measurements 0.5 and 1 m and the soil-air temperature differences at the height of measurements, are obtained for different heights. The diurnal mean RHI profiles are characterized by a heating on the order of several K/h in the lower part of the layer of measurements, which decreases with height and changes to cooling at heights of up to 4 m. A change in the effective radiation with height in the layer of measurements, which was obtained through the summation of RHI values at several heights, was significant, attaining on average ?25 W/m2 in the near-noon hours and +10 W/m2 in the evening hours. The nonradiative (turbulent) heat influx, obtained as the difference between the rates of actual and radiative temperature variations measured in situ, decreased the radiative heating in the daytime many times. The main sources of error in direct RHI measurements are estimated.  相似文献   
27.
The ERA40 and NCEP/NCAR data over 1958–1998 were used to estimate the sensitivity of amplitude-phase characteristics (APCs) of the annual cycle (AC) of the surface air temperature (SAT) T s. The results were compared with outputs of the ECHAM4/OPYC3, HadCM3, and INM RAS general circulation models and the IAP RAS climate model of intermediate complexity, which were run with variations in greenhouse gases and sulfate aerosol specified over 1860–2100. The analysis was performed in terms of the linear regression coefficients b of SAT AC APCs on the local annual mean temperature and in terms of the sensitivity characteristic D = br 2, which takes into account not only the linear regression coefficient but also its statistical significance (via the correlation coefficient r). The reanalysis data were used to reveal the features of the tendencies of change in the SAT AC APCs in various regions, including areas near the snow-ice boundary, storm-track ocean regions, large desert areas, and the tropical Pacific. These results agree with earlier observations. The model computations are in fairly good agreement with the reanalysis data in regions of statistically significant variations in SAT AC APCs. The differences between individual models and the reanalysis data can be explained, in particular, in terms of the features of the sea-ice schemes used in the models. Over the land in the middle and high latitudes of the Northern Hemisphere, the absolute values of D for the fall phase time and the interval of exceeding exhibit a positive intermodel correlation with the absolute value of D for the annual-harmonic amplitude. Over the ocean, the models reproducing larger (in modulus) sensitivity parameters of the SAT annual-harmonic amplitude are generally characterized by larger (in modulus) negative sensitivity values of the semiannual-harmonic amplitude T s, 2, especially at latitudes characteristic of the sea-ice boundary. In contrast to the averaged fields of AC APCs and their interannual standard deviations, the sensitivity parameters of the SAT AC APCs on a regional scale vary noticeably for various types of anthropogenic forcing.  相似文献   
28.

Background

Coupled climate-carbon cycle simulations generally show that climate feedbacks amplify the buildup of CO2 under respective anthropogenic emission. The effect of climate-carbon cycle feedback is characterised by the feedback gain: the relative increase in CO2 increment as compared to uncoupled simulations. According to the results of the recent Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP), the gain is expected to increase during the 21st century. This conclusion is not supported by the climate model developed at the A.M. Obukhov Institute of Atmospheric Physics at the Russian Academy of Sciences (IAP RAS CM). The latter model shows an eventual transient saturation of the feedback gain. This saturation is manifested in a change of climate-carbon cycle feedback gain which grows initially, attains a maximum, and then decreases, eventually tending to unity.

Results

Numerical experiments with the IAP RAS CM as well as an analysis of the conceptual framework demonstrate that this eventual transient saturation results from the fact that transient climate sensitivity decreases with time.

Conclusion

One may conclude that the eventual transient saturation of the climate-carbon cycle feedback is a fundamental property of the coupled climate-carbon system that manifests itself on a relevant time scale.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号