首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   10篇
  国内免费   5篇
测绘学   3篇
大气科学   18篇
地球物理   70篇
地质学   91篇
海洋学   44篇
天文学   27篇
综合类   2篇
自然地理   15篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2016年   9篇
  2015年   8篇
  2014年   7篇
  2013年   10篇
  2012年   12篇
  2011年   18篇
  2010年   12篇
  2009年   15篇
  2008年   9篇
  2007年   13篇
  2006年   6篇
  2005年   21篇
  2004年   5篇
  2003年   10篇
  2002年   10篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1989年   7篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   6篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有270条查询结果,搜索用时 484 毫秒
61.
Here, we construct a comprehensive howardite, eucrite, and diogenite (HED) bulk chemistry data set to compare with Dawn data. Using the bulk chemistry data set, we determine four gamma‐ray/neutron parameters in the HEDs (1) relative fast neutron counts (fast counts), (2) macroscopic thermal neutron absorption cross section (absorption), (3) a high‐energy gamma‐ray compositional parameter (Cp), and (4) Fe abundance. These correspond to the four measurements of Vesta made by Dawn's Gamma Ray and Neutron Detector (GRaND) that can be used to discern HED lithologic variability on the Vestan surface. We investigate covariance between fast counts and average atomic mass (<A>) in the meteorite data set, where a strong correlation (r2 = 0.99) is observed, and we demonstrate that systematic offsets from the fast count/<A> trend are linked to changes in Fe and Ni concentrations. To compare the meteorite and GRaND data, we investigate and report covariance among fast counts, absorption, Cp, and Fe abundance in the HED meteorite data set. We identify several GRaND measurement spaces where the Yamato type B diogenites are distinct from all other HED lithologies, including polymict mixtures. The type B's are diogenites that are enriched in Fe + pigeonite + diopside ± plagioclase, relative to typical, orthopyroxenitic diogenites. We then compare these results to GRaND data and demonstrate that regions north of ~70°N latitude on Vesta (including the north pole) are consistent with type B diogenites. We propose two models to explain type B diogenite compositions in the north (1) deposition as Rheasilvia ejecta, or (2) type B plutons that were emplaced at shallow depths in the north polar region and sampled by local impacts. Lastly, using principal component (PC) analysis, we identify unique PC spaces for all HED lithologies, indicating that the corresponding GRaND measurables may be used to produce comprehensive lithologic maps for Vesta.  相似文献   
62.
63.
Abstract— The high‐pressure polymorphs of olivine, pyroxene, and plagioclase in or adjacent to shock melt veins (SMVs) in two L6 chondrites (Sahara 98222 and Yamato 74445) were investigated to clarify the related transformation mechanisms and to estimate the pressure‐temperature conditions of the shock events. Wadsleyite and jadeite were identified in Sahara 98222. Wadsleyite, ringwoodite, majorite, akimotoite, jadeite, and lingunite (NaAlSi3O8‐hollandite) were identified in Yamato 74445. Wadsleyite nucleated along the grain boundaries and fractures of original olivine. The nucleation and growth of ringwoodite occurred along the grain boundaries of original olivine, and as intracrystalline ringwoodite lamellae within original olivine. The nucleation and growth of majorite took place along the grain boundaries or fractures in original enstatite. Jadeite‐containing assemblages have complicated textures containing “particle‐like,” “stringer‐like,” and “polycrystalline‐like” phases. Coexistence of lingunite and jadeite‐containing assemblages shows a vein‐like texture. We discuss these transformation mechanisms based on our textural observations and chemical composition analyses. The shock pressure and temperature conditions in the SMVs of these meteorites were also estimated based on the mineral assemblages in the SMVs and in comparison with static high‐pressure experimental results as follows: 13–16 GPa, >1900 °C for Sahara 98222 and 17–24 GPa, >2100 °C for Yamato 74445.  相似文献   
64.
Dissolved organic matter (DOM) in groundwater and surface water samples from the Florida coastal Everglades were studied using excitation–emission matrix fluorescence modeled through parallel factor analysis (EEM-PARAFAC). DOM in both surface and groundwater from the eastern Everglades S332 basin reflected a terrestrial-derived fingerprint through dominantly higher abundances of humic-like PARAFAC components. In contrast, surface water DOM from northeastern Florida Bay featured a microbial-derived DOM signature based on the higher abundance of microbial humic-like and protein-like components consistent with its marine source. Surprisingly, groundwater DOM from northeastern Florida Bay reflected a terrestrial-derived source except for samples from central Florida Bay well, which mirrored a combination of terrestrial and marine end-member origin. Furthermore, surface water and groundwater displayed effects of different degradation pathways such as photodegradation and biodegradation as exemplified by two PARAFAC components seemingly indicative of such degradation processes. Finally, Principal Component Analysis of the EEM-PARAFAC data was able to distinguish and classify most of the samples according to DOM origins and degradation processes experienced, except for a small overlap of S332 surface water and groundwater, implying rather active surface-to-ground water interaction in some sites particularly during the rainy season. This study highlights that EEM-PARAFAC could be used successfully to trace and differentiate DOM from diverse sources across both horizontal and vertical flow profiles, and as such could be a convenient and useful tool for the better understanding of hydrological interactions and carbon biogeochemical cycling.  相似文献   
65.
The melting temperature of Fe–18 wt% Si alloy was determined up to 119 GPa based on a change of laser heating efficiency and the texture of the recovered samples in the laser-heated diamond anvil cell experiments. We have also investigated the subsolidus phase relations of Fe–18 wt% Si alloy by the in-situ X-ray diffraction method and confirmed that the bcc phase is stable at least up to 57 GPa and high temperature. The melting curve of the alloy was fitted by the Simon’s equation, P(GPa)/a = (T m(K)/T 0) c , with parameters, T 0 = 1,473 K, a = 3.5 ± 1.1 GPa, and c = 4.5 ± 0.4. The melting temperature of bcc Fe–18 wt% Si alloy is comparable with that of pure iron in the pressure range of this work. The melting temperature of Fe–18 wt% Si alloy is estimated to be 3,300–3,500 K at 135 GPa, and 4,000–4,200 K at around 330 GPa, which may provide the lower bound of the temperatures at the core–mantle boundary and the inner core–outer core boundary if the light element in the core is silicon.  相似文献   
66.
The photoluminescence (PL) and optical excitation spectra of baratovite in aegirine syenite from Dara-i-Pioz, Tien Shan Mts., Tajikistan and katayamalite in aegirine syenite from Iwagi Islet, Ehime, Japan were obtained at 300 and 80 K. Under short wave (253.7 nm) ultraviolet light, baratovite and katayamalite exhibited bright blue-white luminescence. The PL spectrum of baratovite at 300 K consisted of a wide band with a peak at approximately 406 nm and a full width at half maximum (FWHM) of approximately 6.32k cm−1. The excitation spectrum of the blue-white luminescence from baratovite at 300 K consisted of a prominent band with a peak at approximately 250 nm. The PL and excitation spectra of katayamalite were similar to those of baratovite. The luminescence from these minerals was attributed to the intrinsic luminescence from the TiO6 center.  相似文献   
67.
The melting curve of perovskite MgSiO3 and the liquidus and solidus curves of the lower mantle were estimated from thermodynamic data and the results of experiments on phase changes and melting in silicates.The initial slope of the melting curve of perovskite MgSiO3 was obtained as dTm/dP?77 KGPa?1 at 23 GPa. The melting curve of perovskite was expressed by the Kraut-Kennedy equation as Tm(K)=917(1+29.6ΔVV0), where Tm?2900 K and P?23 GPa; and by the Simon equation, P(GPa)?23=21.2[(Tm(K)2900)1.75?1].The liquidus curve of the lower mantle was estimated as Tliq ? 0.9 Tm (perovskite) and this gives the liquidus temperature Tliq=7000 ±500 K at the mantle-core boundary. The solidus curve of the lower mantle was also estimated by extrapolating the solidus curve of dry peridotite using the slope of the solidus curve of magnesiowüstite at high pressures. The solidus temperature is ~ 5000 K at the base of the lower mantle. If the temperature distribution of the mantle was 1.5 times higher than that given by the present geotherm in the early stage of the Earth's history, partial melting would have proceeded into the deep interior of the lower mantle.Estimation of the density of melts in the MgOFeOSiO2 system for lower mantle conditions indicates that the initial melt formed by partial fusion of the lower mantle would be denser than the residual solid because of high concentration of iron into the melt. Thus, the melt generated in the lower mantle would tend to move downward toward the mantle-core boundary. This downward transportation of the melt in the lower mantle might have affected the chemistry of the lower mantle, such as in the D″ layer, and the distribution of the radioactive elements between mantle and core.  相似文献   
68.
High-pressure phase transformations were investigated for two silicates, MgSiO3 and ZnSiO3; six germanates, MGeO3 and six titanates, MTiO3 (M=Ni, Mg, Co, Zn, Fe, and Mn) at about 1,000°C and pressures up to ca. 30 GPa. CoGeO3 was found to assume the ilmenite form. The ilmenite phases were confirmed to transform in the following schemes: to perovskite in MgSiO3 and MnGeO3, to corundum in MgGeO3 and ZnGeO3, to rocksalt plus rutile in ZnSiO3 and CoGeO3 and to rocksalt plus TiO2 (possibly of some denser structure) in NiTiO3, MgTiO3, CoTiO3, ZnTiO3 and FeTiO3. In the case of FeTiO3, the corundum form appeared as an intermediate phase. The possibility that the corundum type MnTiO3 might transform to some denser modification could not be excluded. The compound NiGeO3 was nonexistent throughout the pressure range studied. High-pressure phases of ABO3 (A=Ni, Mg, Co, Zn, Fe, and Mn; B=Si, Ge and Ti) are summarized, and those stabilized at pressures higher than 20 GPa are discussed.  相似文献   
69.
High-pressure stability relations in cobalt and nickel silicates have been studied over the pressure range 130–330 kbar employing a double-staged split-sphere-type high-pressure apparatus.γ-Co2SiO4 and γ-Ni2SiO4 decompose directly into their constituent oxide mixtures (rocksalt plus stishovite) 175 kbar and 280 kbar, respectively. The result that γ-Ni2SiO4 has a wider stability field in pressure than γ-Co2SiO4, is consistent with simple crystal-field theory.The experimental precision is high enough to show that the decomposition boundary of γ-Co2SiO4 has a positive slope (dP/dT > 0) and a preliminary determination of the boundary curve is P(kbar) = 0.065 T (°C) + 110.No positive evidence for the existence of high-pressure forms of CoSiO3 and NiSiO3 has been obtained in these quenching experiments, and they finally decompose into constituent oxide mixtures as in the cases of orthosilicates.  相似文献   
70.
Magnesium orthosilicate with spinel structure (γ-Mg2SiO4) was synthesized at about 250 kbar and 1000°C. Unit cell dimension was established to be 8.076 ± 0.001Å. X-ray powder diffraction pattern revealed a significant difference between γ-Mg2SiO4 and other γ-M2SiO4 spinels (M = Fe, Co, and Ni) in the intensities of (111) and (331) reflections, both of which are virtually absent in the Mg2SiO4 spinel. This feature could be thoroughly understood by the calculation of the intensities for several silicate spinels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号