首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   3篇
测绘学   3篇
大气科学   27篇
地球物理   56篇
地质学   78篇
海洋学   13篇
天文学   87篇
综合类   1篇
自然地理   14篇
  2021年   8篇
  2020年   3篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   6篇
  2014年   5篇
  2013年   23篇
  2012年   5篇
  2011年   10篇
  2010年   9篇
  2009年   8篇
  2008年   15篇
  2007年   17篇
  2006年   8篇
  2005年   11篇
  2004年   5篇
  2003年   6篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   8篇
  1993年   2篇
  1992年   2篇
  1990年   6篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   9篇
  1974年   3篇
  1973年   6篇
  1968年   2篇
  1943年   2篇
  1895年   2篇
排序方式: 共有279条查询结果,搜索用时 10 毫秒
271.
Internal layers in ice masses can be detected with ice-penetrating radar. In a flowing ice mass, each horizon represents a past surface that has been subsequently buried by accumulation, and strained by ice flow. These layers retain information about relative spatial patterns of accumulation and ablation (mass balance). Internal layers are necessary to accurately infer mass-balance patterns because the ice-surface shape only weakly reflects spatial variations in mass balance. Additional rate-controlling information, such as the layer age, the ice temperature, or the ice-grain sizes and ice-crystal fabric, can be used to infer the absolute rate of mass balance. To infer mass balance from the shapes of internal layers, we solve an inverse problem. The solution to the inverse problem is the best set or sets of unknown boundary conditions or initial conditions that, when used in our calculation of ice-surface elevation and internal-layer shape, generate appropriate predictions of observations that are available. We also show that internal layers can be used to infer martian paleo-surface topography from a past era of ice flow, even though the topography may have been largely altered by subsequent erosion. We have successfully inferred accumulation rates and surface topography from internal layers in Antarctica. Using synthetic data, we demonstrate the ability of this method to solve the corresponding inverse problem to infer accumulation and ablation rates, as well as the surface topography, for martian ice. If past ice flow has affected the shapes of martian internal layers, this method is necessary to infer the spatial pattern and rate of mass balance.  相似文献   
272.
Thirteen high-dispersion spectrographs of the eclipsing binary star SZ Cam have been studied with a view of determining more accurate information on: (i) the spectral type and luminosity classifications, (ii) absolute parameters for the component stars, (iii) the stellar environment of SZ Cam. The main results in these categories are as follows: (i) O9.5 Vnk, (ii)m g=19±2M ,m s=6.5±1M ;r g=9.7±3.6R ,r s=4.8±1.7R ;T e~30000 K,T e~23000 K; (iii) there is a local concentration of absorbing material which may reach a density of 2M pc?3, and the distance of the star is found to be 600±150 pc. The determined overluminosity of the secondary star and the local concentration of absorbing material are two topics which provide the basis for a discussion section.  相似文献   
273.
A new formula has been derived for geopotential expressed in terms of orbital elements. The summation sequence was changed so that the terms of the same frequencies would be grouped and the generalized lumped coefficients were derived. The proposed formula has the same form for both odd and evenl-m.Applying Hori's perturbation method, new formulae were derived for tesseral harmonic perturbations in nonsingular orbital elements:l+g, h, e cosg,e sing, L, andH. We show the possibility of effective application of the derived formulae to the calculation of orbits of very low satellites taking into account the coefficients of tesseral harmonics of the Earth's gravitational field up to high orders and degrees. As an example the perturbations up to the order and degree of 90 for the orbit of GRM satellites were calculated. The calculations were carried out on an IBM AT personal computer.  相似文献   
274.
We have obtained reflectivity spectra of the trailing and leading sides of all four Galilean satellites with circular variable filter wheel spectrometers operating in the 0.7- to 5.5-μm spectral interval. These observations were obtained at an altitude of 41,000 ft from the Kuiper Airborne Observatory. Features seen in these data include a 2.9-μm band present in the spectra of both sides of Callisto; the well-known 1.5-μm and 2.0-μm combination bands and the previously more poorly defined 3.1-μm fundamental of water ice observed in the spectra of both sides of Europa and Ganymede; and features centered at 1.35 ± 0.1, 2.55 ± 0.1, and 4.05 ± 0.05 μm noted in the spectra of both sides of Io. In an effort to interpret these data, we have compared them with laboratory spectra as well as synthetic spectra constructed with a simple multiple-scattering theory. We attribute the 2.9-μm feature of Callisto's spectra primarily to bound water, with the product of fractional abundance of bound water and mean grain radius in micrometers equaling approximately 3.5 × 10?1 for both sides of the satellite. The fractional amounts of water ice cover on the trailing side of Ganymede, its leading side, and the leading side of Europa were found to be 50 ± 15, 65 ± 15, and 85% or greater, respectively. The bare ground areas on Ganymede have reflectivity properties in the 0.7- to 2.5-μm spectral region comparable to those of Callisto's surface and also have significant quantities of bound water, as does Callisto. Interpretation of the spectrum for the trailing side of Europa is complicated by magnetospheric particle bombardment which causes a perceptible broadening of strong bands, but the ice cover on this side is probably comparable to that on the leading side. These irradiation effects may be responsible for much of the difference in the visual geometric albedos of the two sides of Europa. Minor, but significant, amounts of ferrous-bearing material (either ferrous salts or alkali feldspars but not olivines or pyroxenes) account for the 1.35-μm feature of Io. The two longer wavelength bands are most likely attributable to nitrate salts. Ferrous salts and nitrates can jointly also account for much of the spectral variation in Io's visible reflectivity, thereby eliminating the need to postulate large quantities of sulfur. The absence of noticeable features near 3-μm wavelength in Io's spectra leads to upper bounds of 10% on the fractional cover of water and ammonia ice and 10?3 on the relative abundance of bound water and hydroxylated material on Io. The two sides of Io have similar compositions. We suggest that the systematic increase in fractional water ice cover from Callisto to Ganymede to Europa is bought about by variations in efficiencies of recoating the satellite's surface by interior water brought to the surface, and by the deposition of extrinsic dust. The most important component of the latter is debris, derived from the outer irregular satellites of Jupiter, which impacts the Galilean satellites at relatively low velocities. Europa has the largest water ice cover because its crust is thinnest and thus the frequency of water recoating is the greatest, and because it is farthest from the sources of low-velocity dust. While models which depict Io's surface as consisting primarily of very fine-grained ice are no longer viable, we are unable to definitively distinguish between the salt assemblage and alkali feldspar models. The salt model can better account for Io's reflectivity spectrum from 0.3 to 5 μm, but the absence of appreciable quantities of bound water and hydroxylated material may not be readily understood within the context of that model.  相似文献   
275.
The common appearance of hygroscopic brine (“sweating”) on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water‐soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11‐month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42?, HCO3?, Na+, and Cl?, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl? (from soil), SO42? (from meteoritic troilite and soil), and iron (meteoritic). “Sweating meteorites” mainly contain Mg2+ and Cl?. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na‐rich phase or loss of an efflorescent Na‐salt. The total concentrations of water‐soluble ions in bulk OCs ranges from 600 to 9000 μg g?1 (median 2500 μg g?1) as compared to 187–14140 μg g?1 in soils (median 1148 μg g?1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water‐soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca‐sulfate contamination.  相似文献   
276.
We present the design of a novel way of handling astronomical catalogs in Astro-WISE in order to achieve the scalability required for the data produced by large scale surveys. A high level of automation and abstraction is achieved in order to facilitate interoperation with visualization software for interactive exploration. At the same time flexibility in processing is enhanced and data is shared implicitly between scientists. This is accomplished by using a data model that primarily stores how catalogs are derived; the contents of the catalogs are only created when necessary and stored only when beneficial for performance. Discovery of existing catalogs and creation of new catalogs is done through the same process by directly requesting the final set of sources (astronomical objects) and attributes (physical properties) that is required, for example from within visualization software. New catalogs are automatically created to provide attributes of sources for which no suitable existing catalogs can be found. These catalogs are defined to contain the new attributes on the largest set of sources the calculation of the attributes is applicable to, facilitating reuse for future data requests. Subsequently, only those parts of the catalogs that are required for the requested end product are actually processed, ensuring scalability. The presented mechanisms primarily determine which catalogs are created and what data has to be processed and stored: the actual processing and storage itself is left to existing functionality of the underlying information system.  相似文献   
277.
278.
279.
Equilibrium chlorine-isotope (37Cl/35Cl) fractionations have been determined by using published vibrational spectra and force-field modeling to calculate reduced partition function ratios for Cl-isotope exchange. Ab initio force fields calculated at the HF/6-31G(d) level are used to estimate unknown vibrational frequencies of 37Cl-bearing molecules, whereas crystalline phases are modeled by published lattice-dynamics models. Calculated fractionations are principally controlled by the oxidation state of Cl and its bond partners. Molecular mass (or the absence of C-H bonds) also appears to play a role in determining relative fractionations among simple Cl-bearing organic species. Molecules and complexes with oxidized Cl (i.e., Cl0, Cl+, etc.) will concentrate 37Cl relative to chlorides (substances with Cl). At 298 K, ClO2 (containing Cl4+) and [ClO4] (containing Cl7+) will concentrate 37Cl relative to chlorides by as much as 27‰ and 73‰, respectively, in rough agreement with earlier calculations. Among chlorides, 37Cl will be concentrated in substances where Cl is bonded to +2 cations (i.e., FeCl2, MnCl2, micas, and amphiboles) relative to substances where Cl is bonded to +1 cations (such as NaCl) by ∼2 to 3‰ at 298 K; organic molecules with C-Cl bonds will be even richer in 37Cl (∼5 to 9‰ at 298 K). Precipitation experiments, in combination with our results, provide an estimate for Cl-isotope partitioning in brines and suggest that silicates (to the extent that their Cl atoms are associated with nearest-neighbor +2 cations analogous with FeCl2 and MnCl2) will have higher 37Cl/35Cl ratios than coexisting brine (by ∼2 to 3‰ at room temperature). Calculated fractionations between HCl and Cl2, and between brines and such alteration minerals, are in qualitative agreement with both experimental results and systematics observed in natural samples. Our results suggest that Cl-bearing organic molecules will have markedly higher 37Cl/35Cl ratios (by 5.8‰ to 8.5‰ at 295 K) than coexisting aqueous solutions at equilibrium. Predicted fractionations are consistent with the presence of an isotopically heavy reservoir of HCl that is in exchange equilibrium with Claq in large marine aerosols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号