首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2847篇
  免费   115篇
  国内免费   17篇
测绘学   106篇
大气科学   337篇
地球物理   592篇
地质学   856篇
海洋学   321篇
天文学   540篇
综合类   4篇
自然地理   223篇
  2023年   9篇
  2022年   10篇
  2021年   32篇
  2020年   43篇
  2019年   44篇
  2018年   82篇
  2017年   61篇
  2016年   112篇
  2015年   64篇
  2014年   87篇
  2013年   139篇
  2012年   123篇
  2011年   158篇
  2010年   130篇
  2009年   190篇
  2008年   173篇
  2007年   155篇
  2006年   131篇
  2005年   108篇
  2004年   116篇
  2003年   104篇
  2002年   97篇
  2001年   76篇
  2000年   83篇
  1999年   68篇
  1998年   84篇
  1997年   45篇
  1996年   44篇
  1995年   32篇
  1994年   23篇
  1993年   32篇
  1992年   22篇
  1991年   31篇
  1990年   13篇
  1989年   16篇
  1987年   14篇
  1986年   10篇
  1985年   18篇
  1984年   25篇
  1983年   19篇
  1982年   11篇
  1981年   6篇
  1980年   8篇
  1979年   9篇
  1978年   9篇
  1977年   10篇
  1976年   13篇
  1975年   13篇
  1973年   8篇
  1971年   7篇
排序方式: 共有2979条查询结果,搜索用时 15 毫秒
451.
The relationship between hydrological conditions and riparian helophyte vegetation was studied in two freshwater estuaries that differed in tidal regulation in order to assess the effects of large-scale hydrological regulation on the fringe vegetation. Vegetation and environmental variables were sampled for 206 sites in the Rhine-Meuse estuary (146 sites) and the IJsselmeer region (60 sites) in the Netherlands. These samples were classified into 10 vegetation types, all of which were dominated by tall helophytes. The most common vegetation types were dominated byPhragmites australis andTypha angustifolia, which formed both monospecific stands and mixtures. Tall Cyperaceae dominated three vegetation types (dominated individually bySchoenoplectus lacustris, Bolboschoenus maritimus, andSchoenoplectus tabernaemontani).Acorus calamus. Principal components analysis of the species composition of vegetation fringing open-water areas and associated environmental data revealed complex gradients incorporating differences in water depth, water-level fluctuation, were exposure, and sedimentation and/or erosion. The composition of the helophyte belts varied among the areas as the result of the differing times at which regulation occurred. Based on historical data, hydrological regulation of the estuaries has resulted in deterioration of intertidalSchoenoplectus andBolboschoenus stands, due to erosion and predation.P. australis stands have been invaded by terrestrial plant species or have been replaced byT. angustifolia. A scheme is presented of helophyte vegetation development under the influence of changes in the hydrological regime.  相似文献   
452.
The Elzevir Terrane of the Grenville Orogen in southern Ontario contains metapelites and abundant graphitic marbles that were regionally metamorphosed from the upper greenschist to upper amphibolite facies. Comparative thermometry was undertaken with widely used calibrations for the systems garnet-biotite, calcite-dolomite, and calcite-graphite. Temperatures that are obtained from matrix biotites paired with prograde garnet near-rim analyses are usually consistent with those determined using calcite-graphite thermometry. However, calcite-graphite thermometry occasionally yields low temperatures due to lack of equilibration of anomalously light graphite. Application of calcite-graphite and garnet-biotite systems may yield temperatures up to 70 °C higher than calcite-dolomite in amphibolite facies rocks. Calcite-dolomite temperatures most closely approach those from calcite-graphite and garnet-biotite when the samples contain a single generation of dolomite and calcite grains contain no visible dolomite exsolution lamellae. However, some of these samples yield temperatures considerably lower than temperatures calculated from calcite-graphite and garnet-biotite thermometry, indicating that the calcite-dolomite thermometer may have been partially reset during retrogression. Estimated peak metamorphic temperatures of regional metamorphism between Madoc (upper greenschist facies) and Bancroft (upper amphibolite facies) range from 500 to 650 °C. These results place the chlorite-staurolite isograd at 540 °C, the kyanite-sillimanite isograd at 590 °C, and the sillimanite-K-feldspar isograd at 650 °C. Although each thermometer may have an absolute uncertainty of as much as ±50 °C, the 50 to 60 °C temperature differences between the isograds are probably accurate to 10 to 20 °C. An incomplete picture of the thermal gradients can result from the application of only one thermometer in a given area. Simultaneous application of several systems allows one to recognize and overcome the inherent limitations of each thermometer. Received: 26 March 1997 / Accepted: 15 April 1998  相似文献   
453.
In the Port Edward area of southern Kwa-Zulu Natal, South Africa, charnockitic aureoles up to 10 m in width in the normally garnetiferous Nicholson's Point Granite, are developed adjacent to intrusive contacts with the Port Edward Enderbite and anhydrous pegmatitic veins. Mineralogical differences between the country rock and charnockitic aureole suggest that the dehydration reaction Bt + Qtz → Opx + Kfs + H2O and the reaction of Grt + Qtz → Opx + Pl were responsible for the charnockitization. The compositions of fluid inclusions show systematic variation with: (1) the Port Edward Enderbite being dominated by CO2 and N2 fluid inclusions; (2) the non-charnockitized granite by saline aqueous inclusions with 18–23 EqWt% NaCl; (3) the charnockitic aureoles by low-salinity and pure water inclusions (<7 EqWt% NaCl); (4) the pegmatites by aqueous inclusions of various salinity with minor CO2. As a result of the thermal event the homogenization temperatures of the inclusions in charnockite show a much larger range (up to 390 °C) compared to the fluid inclusions in granite (mostly <250 °C). Contrary to fluid-controlled charnockitization (brines, CO2) which may have taken place along shear zones away from the intrusive body, the present “proximal” charnockitized granite formed directly at the contact with enderbite. The inclusions indicate contact metamorphism induced by the intrusion of “dry” enderbitic magma into “wet” granite resulting in local dehydration. This was confirmed by cathodoluminescence microscopy showing textures indicative for the local reduction of structural water in the charnockite quartz. Two-pyroxene thermometry on the Port Edward Enderbite suggests intrusion at temperatures of ∼1000–1050 °C into country rock with temperature of <700 °C. The temperature of aureole formation must have been between ∼700 °C (breakdown of pyrite to form pyrrhotite) and ∼1000 °C. Charnockitization was probably controlled largely by heat related to anhydrous intrusions causing dehydration reactions and resulting in the release and subsequent trapping of dehydration fluids. The salinity of the metamorphic fluid in the contact zones is supposed to have been higher at an early stage of contact metamorphism, but it has lost its salt content by K-metasomatic reactions and/or the preferential migration of the saline fluids out of the contact zones towards the enderbite. The low water activity inhibited the localized melting of the granite. Mineral thermobarometry suggests that after charnockite aureole genesis, an isobaric cooling path was followed during which reequilibration of most of the aqueous inclusions occurred. Received: 8 November 1998 / Accepted: 21 June 1999  相似文献   
454.
The Fe M 2,3-edge spectra of solid solutions of garnets (almandine-skiagite Fe3(Al1–xFex)2[SiO4]3 and andradite-skiagite (Fe1–xCax)3Fe2[SiO4]3), pyroxenes (acmite-hedenbergite (Ca1–xNax)(Fe2+ 1−xFe3+ x)Si2O6), and spinels (magnetite-hercynite Fe(Al1–xFex)2O4) have been measured using the technique of parallel electron energy-loss spectroscopy (EELS) conducted in a transmission electron microscope (TEM). The Fe M 2,3 electron energy-loss near-edge structures (ELNES) of the minerals exhibit a characteristic peak located at 4.2 eV and 2.2 eV for trivalent and divalent iron, respectively, prior to the main maximum at about 57 eV. The intensity and energy of the pre-edge feature varies depending on Fe3+/ΣFe. We demonstrate a new quantitative method to extract the ferrous/ferric ratio in minerals. A systematic relationship between Fe3+/ΣFe and the integral intensity ratio of the main maximum and the pre-edge peak of the Fe M 2,3 edge is observed. Since the partial cross sections of the Fe M 2,3 edges are some orders of magnitude higher than those of the Fe L 2,3 edges, the Fe M 2,3 edges are interesting for valence-specific imaging of Fe. The possibility of iron valence-specific imaging is illustrated by Fe M 2,3-ELNES investigations with high lateral resolution from a sample of ilmenite containing hematite exsolution lamellae that shows different edge shapes consistent with variations in the Fe3+/ΣFe ratio over distances on the order of 100 nm. Received: 14 April 1998 / Revised, accepted: 8 March 1999  相似文献   
455.
Electron paramagnetic resonance (EPR) spectroscopy of hot HNO3 insoluble residues of rock powders is used as a new exploration technique for the volcanic-hosted massive sulphide (VHMS) deposit in the Rosebery mine area. The EPR signal intensities measured in 326.5±5 mT sweeps are strong in the altered rocks, and show a negative correlation with Ca, Na and Sr, and a positive correlation with K/Na, Rb/Sr and (K × Rb)/(Ca × Na × Sr). The EPR intensities measured in 326.5±100 mT sweeps show high values in the footwall pyroclastics, host rocks and hanging wall pyroclastics near and around the Rosebery deposit, and correlate positively with K, Fe, Mn, Ba, F, Rb, Zn, Pb and Zr. The Rosebery deposit and associated footwall alteration zone are located at the intersection of two elongated paramagnetic halos. The first is characterized by strong intensities of [AlO4]° signals measured at magnetic flux density sweeps over 326.5±5 mT, trends NE–SW, and passes discordantly from the west to the east the White Spur Formation, altered footwall (footwall alteration zone), host rock of the Rosebery deposit, hanging wall and Mount Black Volcanics. The second, largely stratabound, halo is defined by strong intensities of Mn2+ sextets observed at magnetic flux density sweeps over 326.5±100 mT, runs N–S following the stratigraphic trend, and outlines the mineralized host rock and footwall alteration zone. It also extends toward the south into the unaltered footwall and hanging wall rocks. The first type of halo is considered to be related to wall rock alteration due to the VHMS mineralization processes as well to later Devonian metamorphism, and the second is thought to be related to massive sulphide mineralization alone.  相似文献   
456.
The aeolian sand transport model SAFE and the air flow model HILL were applied to evaluate cross‐shore changes at two nourished beaches and adjacent dunes and to identify the response of aeolian sand transport and morphology to several nourishment design parameters and fill characteristics. The main input of the model consisted of data on the sediment, tide and meteorological conditions, and of half‐yearly measured characteristics of topography, vegetation and sand fences. The cross‐shore profiles generated by SAFE–HILL were compared to measured cross‐shore profiles. The patterns of erosion and deposition, and the morphological development corresponded. In general, the rates of aeolian sand transport were overestimated. The impact of parameters that are related to beach nourishment (namely grain size, adaptation length and beach topography) on profile development was evaluated. Grain size affected the aeolian sand transport rate to the foredunes, and therefore the morphology. Adaptation length, which is a measure of the distance over which sediment transport adapts to a new equilibrium condition, affected the topography of the beach in particular. The topography of a beach nourishment had limited impact on both aeolian sand transport rate and morphology. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
457.
For development of embryo dunes on the highly dynamic land–sea boundary, summer growth and the absence of winter erosion are essential. Other than that, however, we know little about the specific conditions that favour embryo dune development. This study explores the boundary conditions for early dune development to enable better predictions of natural dune expansion. Using a 30 year time series of aerial photographs of 33 sites along the Dutch coast, we assessed the influence of beach morphology (beach width and tidal range), meteorological conditions (storm characteristics, wind speed, growing season precipitation, and temperature), and sand nourishment on early dune development. We examined the presence and area of embryo dunes in relation to beach width and tidal range, and compared changes in embryo dune area to meteorological conditions and whether sand nourishment had been applied. We found that the presence and area of embryo dunes increased with increasing beach width. Over time, embryo dune area was negatively correlated with storm intensity and frequency. Embryo dune area was positively correlated with precipitation in the growing season and sand nourishment. Embryo dune area increased in periods of low storm frequency and in wet summers, and decreased in periods of high storm frequency or intensity. We conclude that beach morphology is highly influential in determining the potential for new dune development, and wide beaches enable development of larger embryo dune fields. Sand nourishment stimulates dune development by increasing beach width. Finally, weather conditions and non‐interrupted sequences of years without high‐intensity storms determine whether progressive dune development will take place. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
458.
Landscape evolution models (LEMs) are an increasingly popular resource for geomorphologists as they can operate as virtual laboratories where the implications of hypotheses about processes over human to geological timescales can be visualized at spatial scales from catchments to mountain ranges. Hypothetical studies for idealized landscapes have dominated, although model testing in real landscapes has also been undertaken. So far however, numerical landscape evolution models have rarely been used to aid field‐based reconstructions of the geomorphic evolution of actual landscapes. To help make this use more common, we review numerical landscape evolution models from the point of view of model use in field reconstruction studies. We first give a broad overview of the main assumptions and choices made in many LEMs to help prospective users select models appropriate to their field situation. We then summarize for various timescales which data are typically available and which models are appropriate. Finally, we provide guidance on how to set up a model study as a function of available data and the type of research question. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
459.
Image gathers as a function of subsurface offset are an important tool for the inference of rock properties and velocity analysis in areas of complex geology. Traditionally, these gathers are thought of as multidimensional correlations of the source and receiver wavefields. The bottleneck in computing these gathers lies in the fact that one needs to store, compute, and correlate these wavefields for all shots in order to obtain the desired image gathers. Therefore, the image gathers are typically only computed for a limited number of subsurface points and for a limited range of subsurface offsets, which may cause problems in complex geological areas with large geologic dips. We overcome increasing computational and storage costs of extended image volumes by introducing a formulation that avoids explicit storage and removes the customary and expensive loop over shots found in conventional extended imaging. As a result, we end up with a matrix–vector formulation from which different image gathers can be formed and with which amplitude‐versus‐angle and wave‐equation migration velocity analysis can be performed without requiring prior information on the geologic dips. Aside from demonstrating the formation of two‐way extended image gathers for different purposes and at greatly reduced costs, we also present a new approach to conduct automatic wave‐equation‐based migration‐velocity analysis. Instead of focusing in particular offset directions and preselected subsets of subsurface points, our method focuses every subsurface point for all subsurface offset directions using a randomized probing technique. As a consequence, we obtain good velocity models at low cost for complex models without the need to provide information on the geologic dips.  相似文献   
460.
Channel bank failure, and collapses of shoal margins and beaches due to flow slides, have been recorded in Dutch estuaries for the past 200 years but have hardly been recognized elsewhere. Current predictions lack forecasting capabilities, because they were validated and calibrated for historic data of cross‐sections in specific systems, allowing local hindcast rather than location and probability forecasting. The objectives of this study were to investigate where on shoal margins collapses typically occur and what shoal margin collapse geometries and volumes are, such that we can predict their occurrence. We identified shoal margin collapses, generally completely submerged, from bathymetry data by analyzing digital elevation models of difference of the Western Scheldt for the period 1959–2015. We used the bathymetry data to determine the conditions for occurrence, specifically to obtain slope height and angle, and applied these variables in a shoal margin collapse predictor. We found 299 collapses along 300 km of shoal margin boundaries over 56 years, meaning that more than five collapses occur on average per year. The average shoal margin collapse body is well approximated by a 1/3 ellipsoid shape, covers on average an area of 34 000 m2 and has an average volume of 100 000 m3. Shoal margin collapses occur mainly at locations where shoals take up a proportionally larger area than average in the cross‐section of the entire estuary, and occur most frequently where lateral shoal margin displacement is low. A receiver operating characteristic curve shows that the forecasting method predicts the shoal margin collapse location well. We conclude that the locations of the shoal margin collapses are well predicted by the variation in conditions of the relative slope height and angle within the Western Scheldt, and likely locations are at laterally relatively stable shoal margins. This provides hypotheses aiding the recognition of these features in sandy estuaries worldwide. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号