首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   10篇
  国内免费   4篇
测绘学   9篇
大气科学   41篇
地球物理   43篇
地质学   83篇
海洋学   44篇
天文学   49篇
综合类   4篇
自然地理   11篇
  2023年   1篇
  2022年   9篇
  2021年   8篇
  2020年   5篇
  2019年   4篇
  2018年   15篇
  2017年   11篇
  2016年   23篇
  2015年   9篇
  2014年   26篇
  2013年   21篇
  2012年   18篇
  2011年   15篇
  2010年   12篇
  2009年   11篇
  2008年   14篇
  2007年   8篇
  2006年   9篇
  2005年   13篇
  2004年   5篇
  2003年   8篇
  2002年   7篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1984年   2篇
  1980年   1篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
171.
This paper examines the soil loss spatial patterns in the Keiskamma catchment using the GIS-based Sediment Assessment Tool for Effective Erosion Control (SATEEC) to assess the soil erosion risk of the catchment. SATEEC estimates soil loss and sediment yield within river catchments using the Revised Universal Soil Loss Equation (RUSLE) and a spatially distributed sediment delivery ratio. Vegetation cover in protected areas has a significant effect in curtailing soil loss. The effect of rainfall was noted as two pronged, higher rainfall amounts received in the escarpment promote vegetation growth and vigour in the Amatole mountain range which in turn positively provides a protective cover to shield the soil from soil loss. The negative aspect of high rainfall is that it increases the rainfall erosivity. The Keiskamma catchment is predisposed to excessive rates of soil loss due to high soil erodibility, steep slopes, poor conservation practices and low vegetation cover. This soil erosion risk assessment shows that 35% of the catchment is prone to high to extremely high soil losses higher than 25 ton ha−1 year−1 whilst 65% still experience very low to moderate levels of soil loss of less than 25 ton ha−1 year−1. Object based classification highlighted the occurrence of enriched valley infill which flourishes in sediment laden ephemeral stream channels. This occurrence increases gully erosion due to overgrazing within ephemeral stream channels. Measures to curb further degradation in the catchment should thrive to strengthen the role of local institutions in controlling conservation practice.  相似文献   
172.
Military shooting range soils contaminated by heavy metals have been subjected to remediation efforts to alleviate the detrimental effects of exposure on humans and the surrounding environment. Waste materials can be used as cost-effective soil amendments to immobilize heavy metals in contaminated soils. In this study, naturally occurring lime-based waste materials including egg shells, oyster shells, and mussel shells were assessed for their effectiveness toward heavy metal immobilization in military shooting range soil in Korea. Soil was treated in batch leaching experiments with 0, 2.5, 5, 10, and 15% of each lime-based waste material. The results showed that the lime-based waste materials effectively reduced water-soluble Pb at an application rate of 2.5% by weight of the soil. Increase in soil pH from 6.6 to 8.0 was considered to be the main chemistry of Pb immobilization, which was supported by the formation of insoluble Pb species at high pH values as confirmed by the visual MINTEQ thermodynamic model. In contrary, water-soluble Cu was increased in the lime-based waste material-treated soils when compared to the untreated soil. This was likely attributed to the formation of soluble Cu?CDOC (dissolved organic carbon) complexes as all lime-based waste materials applied increased DOC contents in the soil. Therefore, care must be taken in selecting the appropriate amendment for immobilizing metals in shooting range soils.  相似文献   
173.
We present a multi-proxy record (pollen, microscopic charcoal, magnetic susceptibility, carbon-isotopic composition, total organic carbon [TOC], carbon/nitrogen [C/N] ratios, and particle size) of the late Holocene environmental change and human activities from Bongpo marsh on the east coast of Korea. Mutual interaction between the environment and humans during the late Holocene has not been properly investigated in Korea due to the lack of undisturbed samples with high sedimentation rates. In this study, the history of human responses to late Holocene environmental changes is clearly reconstructed using a multi-proxy paleoenvironmental approach that has not previously been applied in Korea. The evidence from Bongpo marsh indicates that 1) Bongpo marsh began to develop ca. 650 BC as a coastal lagoon was rapidly filled with organic matter, 2) agricultural disturbance around the study site remained slight until ca. AD 600, 3) full-scale intensive agriculture prevailed and the area of deforestation increased between ca. AD 600 and ca. AD 1870, and 4) the land use changed from lowland rice agriculture to upland cultivation when agricultural productivity declined after AD 1870, probably due to severe deforestation and the consequent heavy influx of clastic sediment on rice fields, as described in various historical documents.  相似文献   
174.
In the heavily industrialized Masan Bay of southern coast, Korea, the potential harmful effects of heavy metals (Cd, Co, Cu, Ni, Pb, Sn, Zn, and Hg) were evaluated in terms of the pollution load index (PLI) and ecological risk assessment index (ERI) methods, and the results obtained were considered alongside the health of the macrobenthic fauna communities. The results revealed that the bay sediments, especially in the inner bay and the outfall area of a sewage treatment plant, are exposed to moderate to serious levels of metal pollution. Hg and Cd contributed the most to the potential toxicity response indices in sediments recently deposited in the bay. The potential ecological risk assessment of heavy metals in the bay was highlighted by the use of the benthic biological pollution index (BPI), suggesting that the ERI is a useful toxicity response index, which can quantify the overall ecological risk level to a target environment.  相似文献   
175.
The geochemical characteristics of an approximately 6‐m‐long sediment core collected from the Jeongokri archaeological site (Hantan River, Korea) were examined to determine the provenance of the sediments and to reconstruct the palaeoenvironment of the study area during the Late Pleistocene (200–127 ka). The core sediments were subdivided into two parts based on grain size: an upper (0–380 cm depth) and lower part (>380 cm depth). The lower part was deposited primarily by fluvial processes during an interglacial period [marine isotope stage (MIS) 7] with warm and humid conditions. Conversely, the upper part was mainly deposited by aeolian processes during a cold and dry glacial period (MIS 6). Geochemical characteristics, represented by major, trace and rare earth element (REE) compositions, and textures of the Jeongokri core sediments show distinct differences between the upper and lower parts. The mineralogy and major, trace and REE compositions indicate that the influence of felsic source rocks (e.g. granite) was dominant in the lower sediments, which were derived from the Hantan River. In contrast, increased quartz content and the very fine and homogeneous grain size in the upper sediments indicate an aeolian origin. REE ratios and distribution patterns, and geochemical signatures indicate that these sediments were derived predominantly from Chinese loess deposits and partially from local sediments from the Korean Peninsula; the possible source area of the upper sediments is the northern part of the Yellow Sea basin. The Yellow Sea basin, having mixed geochemical signatures between Chinese loess and Korean‐derived sediments, was exposed because of low sea levels during MIS 6. The exposed Yellow Sea basin was located in the path of winter‐monsoon winds, which may have carried a great deal of airborne sediments from the basin to the Jeongokri area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
176.
177.
178.
The accretionary wedge of offshore southwestern Taiwan contains abundant deposits of gas hydrate beneath the sea floor. High concentrations of methane in pore waters are observed at several locations with little data concerning historical methane venting available. To understand temporal variation of methane venting in sediments over geologic time, a 23-m-long Calypso piston core (MD05-2911) was collected on the flank of the Yung-An Ridge. Pore water sulfate, dissolved sulfide, dissolved iron, methane, sedimentary pyrite, acid volatile sulfide, reactive iron, organic carbon and nitrogen as well as carbonate δ13C were analyzed.Three zones with markedly different pyrite concentration were found at the study site. Unit I sediments (>20 mbsf) were characterized with a high amount of pyrite (251–380 μmol/g) and a δ13C-depleted carbonate, Unit II sediments (15–20 mbsf) with a low pyrite (15–43 μmol/g) and a high content of iron oxide mineral and Unit III sediments (<10 mbsf) by a present-day sulfate–methane interface (SMI) at 5 m with a high amount of pyrite (84–221 μmol/g) and a high concentration of dissolved sulfide.The oscillation records of pyrite concentrations are controlled by temporal variations of methane flux. With an abundant supply of methane to Unit I and III, anaerobic methane oxidation and associated sulfate reduction favor diagenetic conditions conducive for significant pyrite formation. No AOM signal was found in Unit II, characterized by typical organically-limited normal marine sediments with little pyrite formation. The AOM induced pyrite formation near the SMI generates a marked pyrite signature, rendering such formation of pyrite as a useful proxy in identifying methane flux oscillation in a methane flux fluctuate environment.  相似文献   
179.
If all coronal mass ejections (CMEs) have flux ropes, then the CMEs should keep their helicity signs from the Sun to the Earth according to the helicity conservation principle. This study presents an attempt to answer the question from the Coordinated Data Analysis Workshop (CDAW), “Do all CMEs have flux ropes?”, by using a qualitative helicity sign comparison between interplanetary CMEs (ICMEs) and their CME source regions. For this, we select 34 CME–ICME pairs whose source active regions (ARs) have continuous SOHO/MDI magnetogram data covering more than 24 hr without data gap during the passage of the ARs near the solar disk center. The helicity signs in the ARs are determined by estimation of cumulative magnetic helicity injected through the photosphere in the entire source ARs. The helicity signs in the ICMEs are estimated by applying the cylinder model developed by Marubashi (Adv. Space. Res., 26, 55, 2000) to 16 second resolution magnetic field data from the MAG instrument onboard the ACE spacecraft. It is found that 30 out of 34 events (88 %) are helicity sign-consistent events, while four events (12 %) are sign-inconsistent. Through a detailed investigation of the source ARs of the four sign-inconsistent events, we find that those events can be explained by the local helicity sign opposite to that of the entire AR helicity (28 July 2000 ICME), incorrectly reported solar source region in the CDAW list (20 May 2005 ICME), or the helicity sign of the pre-existing coronal magnetic field (13 October 2000 and 20 November 2003 ICMEs). We conclude that the helicity signs of the ICMEs are quite consistent with those of the injected helicities in the AR regions from where the CMEs erupted.  相似文献   
180.
This paper discusses the hydrochemistry variation and its quality status in Langat River, based on the chemistry of major ions, metal concentrations and suitability for drinking purposes. Water samples were collected from 30 different stations to assess their hydrochemical characteristics. The physico-chemical parameters selected were temperature, electrical conductivity, total dissolved solids (TDS), salinity, dissolved oxygen , pH, redox potential, HCO3, Cl, SO4, NO3, Ca, Na, K, Mg, 27Al, 138Ba, 9Be, 111Cd, 59Co, 63Cu, 52Cr, 57Fe, 55Mn, 60Ni, 208Pb, 80Se and 66Zn to investigate the variation of the constituents in the river water. Most of the parameters comply with the Drinking Water Quality Standard of the World Health Organization and the Malaysian National Standard for Drinking Water Quality by the Malaysia Ministry of Health except for EC, TDS, Cl, HCO3, SO4, Na, Mg, Al, Fe and Se. The results show that the Langat River is unsuitable for drinking purposes directly without treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号