首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   10篇
  国内免费   4篇
测绘学   9篇
大气科学   41篇
地球物理   43篇
地质学   83篇
海洋学   44篇
天文学   49篇
综合类   4篇
自然地理   11篇
  2023年   1篇
  2022年   9篇
  2021年   8篇
  2020年   5篇
  2019年   4篇
  2018年   15篇
  2017年   11篇
  2016年   23篇
  2015年   9篇
  2014年   26篇
  2013年   21篇
  2012年   18篇
  2011年   15篇
  2010年   12篇
  2009年   11篇
  2008年   14篇
  2007年   8篇
  2006年   9篇
  2005年   13篇
  2004年   5篇
  2003年   8篇
  2002年   7篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1984年   2篇
  1980年   1篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
131.
We present a method to derive the relative pointing offsets for SPIRE Fourier-Transform Spectrometer (FTS) solar system object (SSO) calibration targets, which were observed regularly throughout the Herschel mission. We construct ratios R obs(ν) of the spectra for all observations of a given source with respect to a reference. The reference observation is selected iteratively to be the one with the highest observed continuum. Assuming that any pointing offset leads to an overall shift of the continuum level, then these R obs(ν) represent the relative flux loss due to mispointing. The mispointing effects are more pronounced for a smaller beam, so we consider only the FTS short wavelength array (SSW, 958–1546 GHz) to derive a pointing correction. We obtain the relative pointing offset by comparing R obs(ν) to a grid of expected losses for a model source at different distances from the centre of the beam, under the assumption that the SSW FTS beam can be well approximated by a Gaussian. In order to avoid dependency on the point source flux conversion, which uses a particular observation of Uranus, we use extended source flux calibrated spectra to construct R obs(ν) for the SSOs. In order to account for continuum variability, due to the changing distance from the Herschel telescope, the SSO ratios are normalised by the expected model ratios for the corresponding observing epoch. We confirm the accuracy of the derived pointing offset by comparing the results with a number of control observations, where the actual pointing of Herschel is known with good precision. Using the method we derived pointing offsets for repeated observations of Uranus (including observations centred on off-axis detectors), Neptune, Ceres and NGC 7027. The results are used to validate and improve the point-source flux calibration of the FTS.  相似文献   
132.
The Tibetan plateau plays an important role in energy and carbon cycles by providing an elevated heat source and by storing a large amount of soil carbon due to low temperature. The main vegetation of the plateau is alpine grassland. This study evaluates performance of Community Land Model 3.5 with carbon and nitrogen cycles (CLM3.5CN) over a alpine grassland in the Tibetan plateau in terms of energy and carbon fluxes in conditions of reasonable phenology and initial carbon pool comparable to observations. Comparison between model and observation shows following features. The model captures the magnitude of maximum leaf area index (LAI) but underestimats leaf mass. Net ecosystem exchange (NEE) is significantly underestimated during the growing season and soil temperature is also underestimated throughout a year with higher negative bias in winter than in other seasons. In order to examine the cause of the model deficiencies, we design four sensitivity tests: seasonal mulch; shallow rooting depth; reduction of critical soil moisture to limit the decomposition rate; smaller specific leaf area (SLA). Considering seasonal mulch improves the negative bias of soil temperature during dormant season has little effect on the NEE during the growing seasson. Underestimation of NEE during the growing season is partly due to underestimated decomposition rate which results from underestimated soil temperature and deep root placement in the soil column. Underestimation of latent heat flux during summer is partly due to use of large SLA in the model. Other deficiencies are also discussed.  相似文献   
133.
Silicic acid (DSi) benthic fluxes play a major role in the benthic–pelagic coupling of coastal ecosystems. They can sustain microphytobenthos (MPB) development at the water–sediment interface and support pelagic diatoms when river DSi inputs decrease. DSi benthic fluxes have been studied at the seasonal scale but little is known about their dial variations. This study measured the amplitude of such variations in an intertidal area over an entire tidal cycle by following the alteration of DSi pore water concentrations at regular intervals over the flood/ebb period. Furthermore we independently estimated the potential DSi uptake by benthic diatoms and compared it to the variations of DSi pore water concentrations and fluxes. The microphytobenthos DSi demand was estimated from primary production measurements on cells extracted from the sediment. There were large changes in DSi pore water concentration and a prominent effect of tidal pumping: the DSi flushed out from the sediment at rising tide, occurs in a very short period of time, but plays a far more important role in fueling the ecosystem (800 μmol-Si m−2 d−1), than diffusive fluxes occurring throughout the rest of the tidal cycle (2 μmol-Si m−2 d−1). This process is not, to our knowledge, currently considered when describing the DSi cycling of intertidal sediments. Moreover, there was a large potential MPB requirement for DSi (812 μmol-Si m−2 d−1), similar to the advective flow periodically pumped by the incoming tide, and largely exceeded benthic diffusive fluxes. However, this DSi uptake by benthic diatoms is almost undetectable given the variation of DSi concentration profiles within the sediment.  相似文献   
134.
We report the results of the Cornell Mid-IR Asteroid Spectroscopy (MIDAS) survey, a program of ground-based observations designed to characterize the 8-13 μm spectral properties of a statistically significant sample of asteroids from a wide variety of visible to near-IR spectral classes. MIDAS is conducted at Palomar Observatory using the Spectrocam-10 (SC-10) spectrograph on the 200-in Hale telescope. We have measured the mid-infrared spectra of twenty-nine asteroids and have derived temperature estimates from our data that are largely consistent with the predictions of the standard thermal model. We have also generated relative emissivity spectra for the target asteroids. On only one asteroid, 1 Ceres, have we found emissivity features with spectral contrast greater than 5%. Our spectrum of 4 Vesta suggests emissivity variation at the 2-3% level. Published spectra of several of the small number of asteroids observed with ISO (six of which are also included in our survey), which appeared to exhibit much stronger emissivity features, are difficult to reconcile with our measurements. Laboratory work on mineral and meteorite samples has shown that the contrast of mid-IR spectral features is greatly reduced at fine grain sizes. Moreover, the NEAR mission found that 433 Eros is covered by a relatively thick fine-grained regolith. If small bodies in general possess such regoliths, their mid-IR spectral features may be quite subtle. This may explain the evident absence of strong emissivity variation in the majority of the MIDAS spectra.  相似文献   
135.
We describe the ISO programme to observe classical novae. The programme includes observations of novae during and shortly after eruption, and old novae. ISO observations of far infrared fine structure lines are providing us with information about physical conditions in nova ejecta which complement and extend knowledge obtained from ground-based observations. Surprisingly, we are getting little information about dust in nova systems, despite the fact that many novae are prolific dust-producers. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
136.
Solar radiation is one of the most important energy resources of our planet. The interest in its use as a renewable and clean energy to mitigate the greenhouse gases (GHG) effects has increased significantly. This paper evaluates the measurements of global solar radiation and its energy potential and presents a comparison between both of them, as an example of the effort to reduce GHG emissions. The measurements were made with pyranometers installed in the city of Mexicali, Baja California, located in northwestern Mexico, and the city of Yuma, Arizona, located in the southwestern United States. Separated by a distance of 96 km, both cities have a sustained development and are climatically similar, since they present numerous sunny days, extreme hot temperatures and little precipitation. The results presented show differences in their behavior and in the solar radiation measurement values, especially for the critical spring and summer seasons, with values 15.73% (0.042 kW/m2) higher in Mexicali with respect to Yuma. Energy power is estimated, and it is discussed with some variables as global solar radiation, rainfall, air temperature, relative humidity and climatology of clear, partly cloudy, and cloudy days. With this estimation, the solar energy used and GHG avoided is projected for Mexicali. It is assessed that 291 tons of GHG are prevented. The Mexicali values of potential energy are higher than those of Yuma; therefore, this solar and energy comparative study provides reasons to develop these technologies in Mexico, but solar technologies should be deployed also in Yuma. The measured data at the regional level demonstrate their importance, and the relevance of the proposed mitigation strategy for climate change.  相似文献   
137.
The current study presents the application of selected chemometric techniques—hierarchical cluster analysis (HCA) and principal component analysis (PCA)—to evaluate the spatial variation of the water chemistry and to classify the pollution sources in the Langat River. The HCA rendered the sampling stations into two clusters (group 1 and group 2) and identified the vulnerable stations that are under threat. Group1 (LY 1 to LY 14) is associated with seawater intrusion, while group 2 (LY 15 to LY 30) is associated with agricultural and industrial pollution. PCA analysis was applied to the water datasets for group 1 resulting in four components, which explained 85 % of the total variance while group 2 extracted six components, explaining 88 % of the variance. The components obtained from PCA indicated that seawater intrusion, agricultural and industrial pollution, and geological weathering were potential sources of pollution to the study area. This study demonstrated the usefulness of the chemometric techniques on the interpretation of large complex datasets for the effective management of water resources.  相似文献   
138.
The assessment of sediment quality by considering chemical contaminants is required for the effective management of coastal environments. In this study, complex data sets of heavy metals and organic pollutants were integrated to evaluate sediment quality. Thirty-two target pollutants were quantitatively determined in surface sediments from 80 stations in Jinhae Bay, South Korea. A sediment quality index (SQI) was derived by combining the functions of “scope” (the number of variables that do not meet guideline objectives) and “amplitude” (the magnitude by which these variables exceed the guideline objective). The SQI reflects the spatial gradient and differences in the contamination status with regard to heavy metals and organic pollutants in Jinhae Bay. Fifty-nine out of eighty stations surveyed (74%) were classified as being in “excellent” or “good” condition according to the SQI, and no stations were in a “poor” condition. The mean sediment quality guideline quotient (mSGQq) ranged from 0.06 to 0.31 (from nontoxic to marginally toxic). Acute sediment toxicity leading to amphipod mortality was recorded at 17 stations (21%) of the 80 surveyed, where the mortality rate was slightly over 20%. No significant relationship was observed between sediment toxicity and the concentration of each toxicant or mSQGq.  相似文献   
139.
In 2010 eastern Australia received its highest springtime (September–November) rainfall since 1900. Based on historical relationships with sea surface temperatures (SST) and other climate indices, this record rainfall in 2010 was shown to be largely commensurate with the occurrence of a very strong La Niña event and an extreme positive excursion of the SAM. The pattern and magnitude of the tropical SST anomalies in austral spring 2010 were diagnosed to be nearly perfect to produce high rainfall across eastern Australia. Key aspects of this SST pattern were the strong cold anomaly in the central equatorial Pacific, and the strong warm anomalies in the eastern Indian Ocean and the far western Pacific to the north of Australia. Although the recent upward trend in SSTs in the western Pacific/eastern Indian Ocean warm pool accounted for about 50 % of the SST anomaly surrounding northern Australia in 2010, the contribution by the warming trend in these SSTs to the Australian rainfall anomaly in 2010 was assessed to be relatively modest. The strong positive swing in SAM was estimated to have accounted for upwards of 40 % of the regional anomaly along the central east coastal region and about 10 % of the area mean anomaly across eastern Australia. This contribution by the SAM suggests that a significant portion of the rainfall in 2010 may not have been seasonally predictable. However, predictability arising from the promotion of high SAM by the extreme La Nina event can not be ruled out.  相似文献   
140.
Remote sensing has been extensively used for water delineation and has played an important role in water quality evaluation and environmental management strategies. Suspended sediments are important determinants of water quality in coastal zones. Remote sensing enables the effective monitoring of total suspended sediments (TSS) and the detection of areas with critical water quality issues. This study aims to develop and implement regression models for estimating and mapping TSS concentrations from Advanced Land Observation Satellite (ALOS) images over the coastal waters of Langkawi Island, Malaysia. The algorithm was developed based on the water reflectance model, which is a function of the inherent optical properties of water. Such properties can then be linked to TSS concentration. In this study, an ALOS Advanced Visible and Near Infrared Radiometer type 2 device was used as the imaging sensor system. Concurrent complementary in-situ water samples were collected within the area coverage of the sensor, and digital numbers (DN) for each band corresponding to the sea-truth locations were determined. The extracted DN values were converted into reflectance values and then regressed with their respective sea-truth data. An algorithm was proposed to obtain the regression coefficient. This algorithm can estimate TSS concentrations with a high correlation coefficient (R2?=?0.96) and low root-mean-square error (RMSE?=?1.98 mg/l). Finally, a map of the TSS concentration was generated by using the proposed algorithm. This study found that TSS mapping can be conducted by using ALOS data over the coastal waters of Langkawi Island, Malaysia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号