首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8123篇
  免费   1648篇
  国内免费   2347篇
测绘学   744篇
大气科学   1590篇
地球物理   1823篇
地质学   4333篇
海洋学   1357篇
天文学   373篇
综合类   810篇
自然地理   1088篇
  2024年   55篇
  2023年   192篇
  2022年   463篇
  2021年   500篇
  2020年   478篇
  2019年   537篇
  2018年   555篇
  2017年   484篇
  2016年   531篇
  2015年   494篇
  2014年   541篇
  2013年   501篇
  2012年   557篇
  2011年   546篇
  2010年   541篇
  2009年   518篇
  2008年   487篇
  2007年   395篇
  2006年   339篇
  2005年   307篇
  2004年   244篇
  2003年   211篇
  2002年   252篇
  2001年   233篇
  2000年   237篇
  1999年   297篇
  1998年   246篇
  1997年   215篇
  1996年   208篇
  1995年   163篇
  1994年   130篇
  1993年   146篇
  1992年   111篇
  1991年   90篇
  1990年   60篇
  1989年   50篇
  1988年   45篇
  1987年   34篇
  1986年   30篇
  1985年   9篇
  1984年   15篇
  1983年   16篇
  1982年   16篇
  1981年   7篇
  1980年   7篇
  1979年   7篇
  1958年   5篇
  1957年   2篇
  1954年   2篇
  1933年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
951.
基于模糊综合评判和GIS技术的矿山地质环境影响评价   总被引:1,自引:0,他引:1  
蒲白矿产资源集中开采区分布于渭北黑腰带地区的蒲城和白水县,煤炭、石灰岩、铝土矿和粘土等多种矿产的持续开发,产生了各类的矿山地质环境问题,其中煤矿采空区塌陷及裂缝最为突出。选取了地形相对高差、岩土体特征、开采方式、有效深厚比、采空区面积比、矿山地质灾害发育密度、地下水位、压占破坏土地资源等11个指标作为评价因子,构建了矿山地质环境影响评价指标体系。采用模糊综合评判法对研究区矿山地质环境影响进行评价,并结合GIS空间分析技术划分为矿山地质环境影响严重区12个,较严重区4个,较轻区2个。评价结果与实际调查情况较为相近,较客观的反映了采矿活动对矿山地质环境的影响,并结合区内实际提出了矿山地质环境恢复治理措施建议,为矿山地质环境保护与恢复治理提供了依据。  相似文献   
952.
沁水盆地煤层气成藏主控因素与成藏模式分析   总被引:2,自引:0,他引:2  
沁水盆地石炭-二叠系煤层厚度大、分布稳定、演化程度高,具有良好的煤层气勘探潜力,是目前国内首个成功商业化开发的煤层气盆地。基于研究区已有地质成果,对影响沁水盆地煤层气富集成藏的主控地质因素与成藏模式进行分析,认为构造运动、水动力条件、煤层埋深、煤岩组成及热演化程度是控制沁水盆地煤层气成藏的主要地质因素,高镜质组含量、高热演化程度、弱水动力条件和较大的埋深是煤层气成藏的有利条件,向斜是煤层气富集成藏的有利部位。  相似文献   
953.
四川盆地南部地区广泛发育下古生界寒武系、志留系等多套海相页岩层,其中龙马溪组是该区页岩气勘探开发的重点目标层。根据钻井岩心资料,通过有机碳、热解、碳同位素、等温吸附等地球化学实验分析,对川南地区下志留统龙马溪组页岩的有机质特征及其对页岩含气量的影响进行了研究。结果表明,川南地区龙马溪组页岩有机碳含量较高(平均1.53%),有机质类型较好(Ⅰ型和Ⅱ1型),热演化程度高(Ro为1.94%~2.42%),且页岩含气量较高(平均1.85m3/t)。页岩有机质特征是影响页岩含气量的主要因素,有机质丰度、有机质类型和热演化程度三者共同决定了川南地区龙马溪组页岩的含气量。  相似文献   
954.
为计算鄂尔多斯盆地延川南区块煤层气资源量、甄选有利区带及确定先导性试验井组的部署,对全区探井的煤层含气性进行综合分析。结果显示:区块内煤层气含量为5.54~19.56m3/t;兰氏体积为13.59~33.78m3/t,兰氏压力为2.06~3.72MPa,含气饱和度为41.48%~92.19%;临储压力比为19.18%~84.28%。区块整体含气性显示较好,开发较为有利,其中以包括Y3、Y6等井在内的万宝山构造带为煤层气开发的最有利区带。  相似文献   
955.
基于新郑矿区以平均每年0.0813×108m3的涌水量向地表排放热水,造成的地热资源损失和污染环境的现实,在分析地温地质条件基础上,利用热储资源量公式、卡明斯基公式和弹性储存量公式,分别计算了矿山开采前和开采后不同类型地热资源量,并对当前矿区地热潜能进行了评估。在此基础上,提出了选择煤层底板加固技术,保持岩溶裂隙水一定的水位、减少地下水排放和利用识别模型,选择适宜区段作为地热资源开采区,以调减矿山日常的排水量,尽可能维持渗流场基本不变,进而提高热储的潜能,实现节能减排,达到保护与利用地热资源的效果的建议。  相似文献   
956.
This paper presents experimental results of drained and undrained triaxial compression tests of saturated Meuse–Haute/Marne claystone. The emphasis is to study the evolution of pore pressure with growth of microcracks and the effect of pore pressure on mechanical behavior. Basic mechanical responses are first investigated through drained triaxial compression tests, showing nonlinear stress strain relations, volumetric dilatancy and pressure sensitivity. In undrained triaxial compression tests, the pore pressure exhibits a transition from increase to decrease due to the transition from volumetric compressibility to dilatancy caused by the growth of microcracks. The failure surfaces, determined by total stress and Terzaghi’s effective stress under undrained condition, are compared with the one under drained condition.  相似文献   
957.
Environmental degradation resulting from desertification often accelerates biodiversity loss and alters carbon (C) and nitrogen (N) stocks within grassland ecosystem. In order to evaluate the effect of desertification on plant diversity and carbon (C) and nitrogen (N) stocks, species compositions and C and N contents in plants and soil were investigated along five regions with different degrees of desertification in the northeastern margin of the Qinghai-Tibetan Plateau (control, light, moderate, severe and very severe stages). The study showed: (1) species composition and richness changed significantly with the development of grassland desertification; (2) the aboveground biomass C and N contents in the control were 101.60 and 4.03 g m?2, respectively. Compared to the control, the aboveground tissue C and N contents significantly decreased from light, moderate, severe to very severe stages. (3) The root C and N contents in the control in 0–40 cm depth are 1,372.83 and 31.49 g m?2, respectively, while the root C and N contents in 0–40 cm were also declining from the control, light, moderate, severe to very severe stages. (4) Compared to the plant, the soil made a greater contribution for C and N distribution, in which the soil organic C and total N contents in 0–40 cm depth in the control are 20,386.70 and 3,587.89 g m?2, respectively. At the same time, soil organic C and N contents also decreased significantly from the control to very severe stages. These results suggest that grassland desertification not only alters species compositions and leads to the loss of plant diversity, but also results in greater loss of organic C and N in alpine meadow, in which there is a negative effect on reducing greenhouse gas emission.  相似文献   
958.
Soil–water characteristics are necessary for water quality monitoring, solute migration and plant growth. Soil–water characteristic curve (SWCC) is a relationship between suction and water content or degree of saturation. However, little information is available concerning the impacts of grazing exclusion management on soil–water characteristics. Here, the soil–water characteristics of grasslands, which were excluded grazing for 5 (GE5) and 15 years (GE15), were studied. The saturated hydraulic conductivity (K s), SWCC, particle composition, field capacity and some other indexes were determined. Results showed that the clay content and K s of grassland soil were higher for GE15 than GE5. For both treatments, in low suction condition (≤100 kPa), the water holding capacity of 0–10 cm soil was the best. Water holding capacity of topsoil decreased gradually with the increasing of suction, and it reached the strongest when the suction reached 600 kPa. In all soil water suction, the water holding capacity of subsoil was the weakest. The van Genuchten expression was applicable for most of the samples, except 20–30 cm of GE5 and 10–20 cm of GE15. Dual porosity equation was applicable for all the samples. The soil–water capability and soil structure of which was fenced for 15 years is superior to that of 5 years. This study suggests that the enclosure management improved the soil structure and soil–water capability.  相似文献   
959.
Riparian zones act as important buffer zones for non-point source pollution, thus improving the health of aquatic ecosystems. Previous research has shown that riparian zones play an important role, and that land use has an important effect, on phosphorus (P) retention. A spatial basin-scale approach for analyzing P retention and land use effects could be important in preventing pollution in riparian zones. In this study, a riparian phosphorus cycle model based on EcoHAT was generated with algorithms from soil moisture and heat models, simplified soil and plant phosphorus models, plant growth models, and universal soil loss equations. Based on remote sensing data, model performance was enhanced for spatial and temporal prediction of P retention in the riparian zone. A modified soil and plant P model was used to simulate the soil P cycle of a riparian zone in a temperate continental monsoon climate in northern China. A laboratory experiment and a field experiment were conducted to validate the P cycle model. High coefficients of determination (R 2) between simulated and observed values indicate that the model provides reliable results. P uptake variations were the same as the net primary productivity (NPP) trends, which were affected by soil temperature and moisture in the temperate continental monsoon climate. Beginning in June, the monthly content increased, with the maximum appearing in August, when the most precipitation and the highest temperatures occur. The spatial distribution of P uptake rates from March to September showed that areas near water frequently had relatively high values from May to August, which is contrary to results obtained in March, April, and September. The P uptake amounts for different land uses changed according to expectation. The average monthly P uptake rates for farmlands and grasslands were more than those for orchards and lowlands, which had moderate P uptake rates, followed by shrubs and forests. The spatial distribution of soil erosion demonstrated that the soil erosion came primarily from high-intensity agricultural land in the western and central areas, while the northern and eastern study regions, which were less affected by human activity, experienced relatively slight soil erosion. From the point of view of P pollution prevention, the spatial structure of riparian zones and the spatial distribution of land use around the Guanting reservoir are thus not favorable.  相似文献   
960.
Deterioration of grottoes induced by the negative impacts of the variable temperature and moisture conditions has been an important issue in the conservation of heritage sites in China. In this case study, the spatial distributions and varying patterns of moisture and temperature in the caves of Yungang Grottoes, China, were investigated. The relative air humidity was approximately 100 % in the deep zone of the unsaturated surrounding rocks of the grottoes where the temperature remained almost steady at around 9.4 °C. However, the indoor air temperature, relative humidity, and rock surface temperature in the caves varied significantly because of the active exchange of the air with the outside atmosphere. The condensation water appeared on cave walls in the summer when the dew point in the air was higher than the rock surface temperature. Preliminary assessments with a special collection device indicated that the thickness of the transient condensation water could reach 0.03–0.10 mm on the back wall of a cave. The occurrence of this condensation water is expected to worsen salt deterioration of the sculptures in the grottoes. As revealed by long-term observations, a wooden building in front of a cave can weaken the indoor air temperature fluctuation and reduce the condensation water, and consequently, prevent the negative effects of the microclimate for the sculptures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号