首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1434篇
  免费   24篇
  国内免费   11篇
测绘学   12篇
大气科学   92篇
地球物理   298篇
地质学   524篇
海洋学   110篇
天文学   282篇
综合类   4篇
自然地理   147篇
  2020年   12篇
  2018年   14篇
  2017年   20篇
  2016年   19篇
  2015年   16篇
  2014年   27篇
  2013年   51篇
  2012年   27篇
  2011年   33篇
  2010年   55篇
  2009年   46篇
  2008年   45篇
  2007年   47篇
  2006年   57篇
  2005年   38篇
  2004年   42篇
  2003年   55篇
  2002年   45篇
  2001年   19篇
  2000年   25篇
  1999年   25篇
  1998年   17篇
  1997年   22篇
  1996年   31篇
  1995年   19篇
  1994年   28篇
  1993年   24篇
  1992年   22篇
  1991年   17篇
  1990年   25篇
  1989年   23篇
  1988年   19篇
  1987年   20篇
  1986年   26篇
  1985年   36篇
  1984年   44篇
  1983年   34篇
  1982年   33篇
  1981年   31篇
  1980年   32篇
  1979年   31篇
  1978年   27篇
  1977年   21篇
  1976年   19篇
  1975年   21篇
  1974年   20篇
  1973年   25篇
  1972年   11篇
  1971年   15篇
  1970年   13篇
排序方式: 共有1469条查询结果,搜索用时 15 毫秒
991.
Calibration of the Tibetan Plateau Using Regional Seismic Waveforms   总被引:3,自引:0,他引:3  
We use the recordings from 51 earthquakes produced by a PASSCAL deployment in Tibet to develop a two-layer crustal model for the region. Starting with their ISC locations, we iteratively fit the P-arrival times to relocate the earthquakes and estimate mantle and crustal seismic parameters. An average crustal P velocity of 6.2–6.3 km/s is obtained for a crustal thickness of 65 km while the P velocity of the uppermost mantle is 8.1 km/s. The upper layer of the model is further fine-tuned by obtaining the best synthetic SH waveform match to an observed waveform for a well-located event. Green's functions from this model are then used to estimate the source parameters for those events using a grid search procedure. Average event relocation relative to the ISC locations, excluding two poorly located earthquakes, is 16 km. All but one earthquake are determined by the waveform inversion to be at depths between 5 and 15 km. This is 15 km shallower, on average, than depths reported by the ISC. The shallow seismicity cut-off depth and low crustal velocities suggest high temperatures in the lower crust. Thrust faulting source mechanisms dominate at the margins of the plateau. Within the plateau, at locations with surface elevations less than 5 km, source mechanisms are a mixture of strike-slip and thrust. Most events occurring in the high plateau where elevations are above 5 km show normal faulting. This indicates that a large portion of the plateau is under EW extension.  相似文献   
992.
Knowledge of the dynamics of magma fragmentation is necessary for a better understanding of the explosive behaviour of silicic volcanoes. Here we have measured the fragmentation speed and the fragmentation threshold of five dacitic samples (6.7–53.5 vol% open porosity) from Unzen volcano, Kyushu, Japan. The measurements were carried out using a shock-tube-based fragmentation apparatus modified after Alidibirov and Dingwell (1996a,b). The results of the experimental work confirm the dominant influence of porosity on fragmentation dynamics. The velocity of the fragmentation front increases and the value of the fragmentation threshold decreases with increasing porosity. Further, we observe that the fragmentation speed is strongly influenced by the initial pressure difference and the texture of the dacite. At an initial pressure difference of 30 MPa, the fragmentation speed varies from 34 m/s for the least porous sample to 100 m/s for the most porous sample. These results are evaluated by applying them to the 1990–1995 eruptive activity of Unzen volcano. Emplacements of layered lava dome lobes, Merapi-type pyroclastic flows and minor explosive events dominated this eruption. The influence of the fragmentation dynamics on dome collapse and Vulcanian events is discussed.  相似文献   
993.
994.
Published solubility data for amorphous ferric arsenate and scorodite have been reevaluated using the geochemical code PHREEQC with a modified thermodynamic database for the arsenic species. Solubility product calculations have emphasized measurements obtained under conditions of congruent dissolution of ferric arsenate (pH < 3), and have taken into account ion activity coefficients, and ferric hydroxide, ferric sulfate, and ferric arsenate complexes which have association constants of 104.04 (FeH2AsO42+), 109.86 (FeHAsO4+), and 1018.9 (FeAsO4). Derived solubility products of amorphous ferric arsenate and crystalline scorodite (as log Ksp) are −23.0 ± 0.3 and −25.83 ± 0.07, respectively, at 25 °C and 1 bar pressure. In an application of the solubility results, acid raffinate solutions (molar Fe/As = 3.6) from the JEB uranium mill at McClean Lake in northern Saskatchewan were neutralized with lime to pH 2-8. Poorly crystalline scorodite precipitated below pH 3, removing perhaps 98% of the As(V) from solution, with ferric oxyhydroxide (FO) phases precipitated starting between pH 2 and 3. Between pH 2.18 and 7.37, the apparent log Ksp of ferric arsenate decreased from −22.80 to −24.67, while that of FO (as Fe(OH)3) increased from −39.49 to −33.5. Adsorption of As(V) by FO can also explain the decrease in the small amounts of As(V)(aq) that remain in solution above pH 2-3. The same general As(V) behavior is observed in the pore waters of neutralized tailings buried for 5 yr at depths of up to 32 m in the JEB tailings management facility (TMF), where arsenic in the pore water decreases to 1-2 mg/L with increasing age and depth. In the TMF, average apparent log Ksp values for ferric arsenate and ferric hydroxide are −25.74 ± 0.88 and −37.03 ± 0.58, respectively. In the laboratory tests and in the TMF, the increasing crystallinity of scorodite and the amorphous character of the coexisting FO phase increases the stability field of scorodite relative to that of the FO to near-neutral pH values. The kinetic inability of amorphous FO to crystallize probably results from the presence of high concentrations of sulfate and arsenate.  相似文献   
995.
Both chemical weathering rates and fluid flow are difficult to measure in natural systems. However, these parameters are critical for understanding the hydrochemical evolution of aquifers, predicting the fate and transport of contaminants, and for water resources/water quality considerations. 87Sr/86Sr and (234U/238U) activity ratios are sensitive indicators of water-rock interaction, and thus provide a means of quantifying both flow and reactivity. The 87Sr/86Sr values in ground waters are controlled by the ratio of the dissolution rate to the flow rate. Similarly, the (234U/238U) ratio of natural ground waters is a balance between the flow rate and the dissolution of solids, and α-recoil loss of 234U from the solids. By coupling these two isotope systems it is possible to constrain both the long-term (ca. 100’s to 1000’s of years) flow rate and bulk dissolution rate along the flow path. Previous estimates of the ratio of the dissolution rate to the infiltration flux from Sr isotopes (87Sr/86Sr) are combined with a model for (234U/238U) to constrain the infiltration flux and dissolution rate for a 70-m deep vadose zone core from Hanford, Washington. The coupled model for both (234U/238U) ratios and the 87Sr/86Sr data suggests an infiltration flux of 5 ± 2 mm/yr, and bulk silicate dissolution rates between 10−15.7 and 10−16.5 mol/m2/s. The process of α-recoil enrichment, while primarily responsible for the observed variation in (234U/238U) of natural systems, is difficult to quantify. However, the rate of this process in natural systems affects the interpretation of most U-series data. Models for quantifying the α-recoil loss fraction based on geometric predictions, surface area constraints, and chemical methods are also presented. The agreement between the chemical and theoretical methods, such as direct measurement of (234U/238U) of the small grain size fraction and geometric calculations for that size fraction, is quite good.  相似文献   
996.
Here, we present new measurements of 32S, 33S, 34S, and 36S in sedimentary sulfides and couple these measurements with modeling treatments to study the sulfur cycle of a late Paleoproterozoic marine basin. We target the transition in ocean chemistry from the deposition of Paleoproterozoic iron formations (Gunflint Formation, Biwabik Formation, Trommald Formation, and Mahnomen iron formations) to the inferred sulfidic ocean conditions recorded by overlying shale (Rove Formation). The data suggest that certain features of the global sulfur cycle, such as a control by sulfate reducing prokaryotes, and low (mM) concentrations of oceanic sulfate, were maintained across this transition. This suggests that the transition was associated with changes in the structure of the basin-scale sulfur cycle during deposition of these sediments. Sulfide data from the iron formations are interpreted to reflect sedimentary sulfides formed from microbial reduction of pore-water sulfate that was supplied through steady-state exchange with an overlying oceanic sulfate reservoir. The sulfide data for the euxinic Rove Formation shales reflect the operation of a sulfur cycle that included the loss of sulfide by a Rayleigh-like process. We suggest that the prevalence of large and variable heavy isotope enrichments observed in Rove Formation sulfide minerals reflect a sustained and significant net loss of sulfide from the euxinic water column, either as a result of a shallow chemocline and degassing to the atmosphere or as a result of a water column pyrite sink. The inclusion of 36S measurements (in addition to 32S, 33S, and 34S) illustrates the mass-dependent character of these sedimentary environments, ruling out contributions from the weathering of Archean sulfides and pointing to at least modest levels of sustained atmospheric oxygen (>10−5 present atmospheric levels of O2).  相似文献   
997.
The focus of this paper is to relate fundamental statistical properties of landforms and drainage networks to models that have been developed in statistical physics. Relevant properties and models are reviewed and a general overview is presented. Landforms and drainage networks are clearly complex, but well-defined scaling laws are found. Coastlines, topography contours, and lakes are classic self-similar fractals. The height of topography along a linear track is well approximated as a Brownian walk, a self-affine fractal. This type of behavior has also been found in surface physics, for example the surface roughness of a fracture. An applicable model is the Langevin equation, the heat equation with a stochastic white-noise driver. This model also reproduces the statistics of sediment deposition. Drainage networks were one of the original examples of self-similar fractal trees. An important advance in quantifying the structure of drainage networks is the application of the Tokunaga fractal side-branching statistics. A classic problem in statistical physics is the diffusion-limited aggregation. The resulting tree like structures have been shown to also satisfy the Tokunaga statistics. A modified version of the diffusion-limited aggregation model reproduces the statistics of drainage networks. It is concluded that the models developed in statistical physics have direct applicability to the fundamental problems in geomorphology.  相似文献   
998.
We discuss the accuracy requirements for measuring mesoscale (roughly horizontal scales > 10 km or 5 to 10 times the planetary boundary-layer (PBL) depth) fluxes in the convective PBL, and the ability of current research aircraft to achieve this accuracy. We conclude that aircraft equipped with inertial nagivation systems capable of < 3 km hr−1 navigational accuracy are able to resolve mesoscale fluctuations in velocity, and thus variances and fluxes on the mesoscale. We then discuss measurements of velocity and scalar spectra, and cospectra of vertical velocity with horizontal velocity components and scalars, obtained from long flight legs with the National Center for Atmospheric Research Electra aircraft over the boreal forest of Canada in summer during the BOreal Ecosystem-Atmosphere Study (BOREAS), over the tropical Pacific Ocean from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE), and over the East China Sea during wintertime cold-air outbreaks from the Air Mass Transformation Experiment (AMTEX). Each of these studies has somewhat different forcings and boundary conditions, so we can compare their consequences on the spectra and cospectra. On average, we found no significant scalar or momentum fluxes for horizontal scales > 10 km. We also develop a simple model based on observed thermal structure to explain the phase angle between vertical velocity and the along-wind horizontal velocity as a function of height, which shows good agreement with the observed phase angle in AMTEX. The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   
999.
Stable isotopes of faeces contain information related to the animals feeding ecology. The use of stable isotope values from subfossil faeces as a palaeoenvironmental indicator depends on how faithfully the animal records their local environment. Here we present insectivorous bat guano δ13C and δ15N values from a precipitation gradient across the southern United States and northern Mexico to compare with local vegetation and climate. We find δ13C values to be an excellent predictor of expected C4/CAM vegetation, indicating that the bats are non-selective in their diet. Moreover, we find bat guano δ13C values to be strongly correlated with summer precipitation amount and winter precipitation ratio. We also find evidence for a significant relationship with mean annual temperature. In general, we do not find δ15N values to be related to any parameters along the climatic gradient we examined. Additionally, we measured δ13C and δ15N values of bulk guano deposited annually from 1968 to 1987 in a varved guano deposit at Eagle Creek Cave, Arizona. Neither δ13C nor δ15N values were significantly related to various local meteorological variables; however, we found δ13C values of guano to be significantly related to drought and to the North American Monsoon indicating bat guano δ13C values preserve an interpretable record of large-scale atmospheric variability.  相似文献   
1000.
Some F-rich granitic rocks show anomalous, nonchondritic ratios of Y/Ho, extreme negative Eu anomalies, and unusual, discontinuous, segmented chondrite-normalised plots of rare earth elements (REE). The effects of F-rich fluids have been proposed as one of the explanations for the geochemical anomalies in the evolved granitic systems, as the stability of nonsilicate complexes of individual rare earths may affect the fluid-melt element partitioning. The lanthanide tetrad effect, related to different configurations of 4f-electron subshells of the lanthanide elements, is one of the factors affecting such complexing behaviour. We present the first experimental demonstration of the decoupling of Y and Ho, and the tetrad effect in the partitioning of rare earths between immiscible silicate and fluoride melts. Two types of experiments were performed: dry runs at atmospheric pressure in a high-temperature centrifuge at 1100 to 1200°C, and experiments with the addition of H2O at 700 to 800°C and 100 MPa in rapid-quench cold-seal pressure vessels. Run products were analysed by electron microprobe (major components), solution-based inductively coupled plasma mass spectrometry (ICP-MS) (REE in the centrifuged runs), and laser ablation ICP-MS (REE and Li in the products of rapid-quench runs). All the dry centrifuge runs were performed at super-liquidus, two-phase conditions. In the experiments with water-bearing mixtures, minor amounts of aqueous vapour were present in addition to the melts. We found that lanthanides and Y concentrated strongly in the fluoride liquids, with two-melt partition coefficients reaching values as high as 100-220 in water-bearing compositions. In all the experimental samples, two-melt partition coefficients of lanthanides show subtle periodicity consistent with the tetrad effect, and the partition coefficient of Y is greater than that of Ho. One of the mixtures also produced abundant fluorite (CaF2) and cryolite (Na3AlF6) crystals, which enabled us to study fluorite-melt and cryolite-melt REE partitioning. REE concentrations in fluorite are high and comparable to those in the fluoride melt. However, fluorite-melt partition coefficients appear to depend mostly on ionic radii and show neither significant tetrad anomalies, nor differences in Y and Ho partitioning. In contrast, REE concentrations in cryolite are low (∼5-10 times lower than in the silicate melt), and cryolite-melt REE partitioning shows very strong tetrad and Y-Ho anomalies. Our results imply that Y-Ho and lanthanide tetrad anomalies are likely to be caused mainly by aluminofluoride complexes, and the tetrad REE patterns in natural igneous rocks can result from fractionation of F-rich magmatic fluids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号