首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   413篇
  免费   8篇
  国内免费   3篇
测绘学   13篇
大气科学   17篇
地球物理   120篇
地质学   146篇
海洋学   24篇
天文学   32篇
综合类   3篇
自然地理   69篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   8篇
  2019年   5篇
  2018年   11篇
  2017年   5篇
  2016年   18篇
  2015年   7篇
  2014年   22篇
  2013年   25篇
  2012年   18篇
  2011年   23篇
  2010年   25篇
  2009年   29篇
  2008年   25篇
  2007年   25篇
  2006年   15篇
  2005年   23篇
  2004年   12篇
  2003年   20篇
  2002年   15篇
  2001年   13篇
  2000年   11篇
  1999年   8篇
  1998年   10篇
  1997年   7篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   7篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   4篇
  1984年   2篇
  1982年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有424条查询结果,搜索用时 11 毫秒
151.
Sedimentological, geochemical and particle-size analyses were used to reconstruct the evolution of both trophic state and hypolimnetic anoxia in Lake Bourget (French Alps) during the last century. Radionuclide dating (210Pb, 137Cs and 241Am) confirmed the annual rhythm of laminations in the upper sediment profile. In Lake Bourget, biochemical varves are triplets composed of a diatom layer (spring lamina), a bio-precipitated calcite-rich layer (spring/summer lamina), and a layer rich in organic matter and detrital particles (winter lamina). The onset of eutrophication and the first appearance of an anoxic facies occurred simultaneously and were dated by laminae counting to AD 1943±1 year. Persistent anoxic conditions began in AD 1960. Eutrophication is characterised by drastic increases in the flux of biogenic silica (mostly diatoms), lacustrine organic matter, and larger calcite crystals (15–30 μm). The increase of organic matter also represents a marker of the onset of anoxic conditions in the hypolimnion. Our results show that eutrophication was the main factor controlling anoxia in the hypolimnion. This eutrophication was caused mostly by the inflow of untreated sewage effluents, and to a lesser extent, by input of fertilizer-derived phosphorus during floods of the Rhone River and run-off from the lake catchment. The Rhone River, however, can also be a source of re-oxygenation via underflows that originate during flood events. Oxygenation of the hypolimnion is also controlled by low winter temperatures, which enable turnover of the lake. Thus, global warming, associated with a forecasted reduction in precipitation, might reduce the efficiency of hypolimnetic re-oxygenation in Lake Bourget.  相似文献   
152.
Between 33°S and 47°S, the southern Chile forearc is affected by the subduction of the aseismic Juan Fernandez Ridge, several major oceanic fracture zones on the subducting Nazca Plate, the active Chile Ridge spreading centre, and the underthrusting Antarctic Plate. The heat flow through the forearc was estimated using the depth of the bottom simulating reflector obtained from a comprehensive database of reflection seismic profiles. On the upper and middle continental slope along the whole forearc, heat flow is about 30–60 mW m–2, a range of values common for the continental basement and overlying slope sediments. The actively deforming accretionary wedge on the lower slope, however, in places shows heat flow reaching about 90 mW m–2. This indicates that advecting pore fluids from deeper in the subduction zone may transport a substantial part of the heat there. The large size of the anomalies suggests that fluid advection and outflow at the seafloor is overall diffuse, rather than being restricted to individual fault structures or mud volcanoes and mud mounds. One large area with very high heat flow is associated with a major tectonic feature. Thus, above the subducting Chile Ridge at 46°S, values of up to 280 mW m–2 indicate that the overriding South American Plate is effectively heated by subjacent zero-age oceanic plate material.  相似文献   
153.
Hydrate Ridge is located at the second accretion-ary ridge along the Cascadia margin of Oregon in the eastern North Pacific (fig. 1). The Bottom Simulating Reflector (BSR) underlies the entire Hydrate Ridge[1]. The Ocean Drilling Program (ODP) in 1992 at Site 892 and the TECFLUX99 and 2000 showed that the gas hydrate occurs just beneath the thin sediment- covered surface and at the horizon of around 64 meter below seafloor (mbsf) on Hydrate Ridge[25]. The col-lision of the Juan de …  相似文献   
154.
Charcoal was sampled in four soil profiles at the Mayumbe forest boundary (DRC). Five fire events were recorded and 44 charcoal types were identified. One stratified profile yielded charcoal assemblages around 530 cal yr BP and > 43.5 cal ka BP in age. The oldest assemblage precedes the period of recorded anthropogenic burning, illustrating occasional long-term absence of fire but also natural wildfire occurrences within tropical rainforest. No other charcoal assemblages older than 2500 cal yr BP were recorded, perhaps due to bioturbation and colluvial reworking. The recorded paleofires were possibly associated with short-lived climate anomalies. Progressively dry climatic conditions since ca. 4000 cal yr BP onward did not promote paleofire occurrence until increasing seasonality affected vegetation at the end of the third millennium BP, as illustrated by a fire occurring in mature rainforest that persisted until around 2050 cal yr BP. During a drought episode coinciding with the ‘Medieval Climate Anomaly’, mature rainforest was locally replaced by woodland savanna. Charcoal remains from pioneer forest indicate that fire hampered forest regeneration after climatic drought episodes. The presence of pottery shards and oil-palm endocarps associated with two relatively recent paleofires suggests that the effects of climate variability were amplified by human activities.  相似文献   
155.
A simple box model of the circulation into and inside the ocean cavern beneath an ice shelf is used to estimate the melt rates of Antarctic glaciers and ice shelves. The model uses simplified cavern geometries and includes a coarse parameterization of the overturning circulation and vertical mixing. The melting/freezing physics at the ice shelf/ocean interface are those usually implemented in high-resolution circulation models of ice shelf caverns. The model is driven by the thermohaline inflow conditions and coupling to the heat and freshwater exchanges at the sea surface in front of the cavern. We tune the model for Pine Island Glacier and then apply it to six other major caverns. The dependence of the melting rate on thermohaline conditions at the ice shelf front is investigated for this set of caverns, including sensitivity studies, alternative parameterizations, and warming scenarios. An analytical relation between the melting rate and the inflow temperature is derived for a particular model version, showing a quadratic dependence of basal melting on small values of the temperature of the inflow, which changes to a linear dependence for larger values. The model predicts melting at all ice shelf bases in agreement with observations, ranging from below a meter per year for Ronne Ice Shelf to about 25 m/year for the Pine Island Glacier. In a warming scenario with a one-degree increase of the inflow temperature, the latter glacier responds with a 1.4-fold increase of the melting rate. Other caverns respond by more than a tenfold increase, as, e.g., Ronne Ice Shelf. The model is suitable for use as a simple fast module izn coarse large-scale ocean models.  相似文献   
156.
Groundwater-surface water interactions (GSI) connect rivers and streams with riparian areas and the adjacent aquifer. Although these interactions exert a substantial control of quantity and quality of both groundwater and surface water, knowledge on GSI along rivers at the regional scale, particularly for inland waterways, is still limited. We investigated GSI along the river Moselle, an important federal inland waterway in Germany, by using radon and tritium to identify gaining (water flux from the aquifer to the surface water) and losing (water flux from the surface water to the aquifer) stream conditions, respectively. Gaining stream conditions were identified by continuously measuring radon along the river during boat surveys with a high spatial resolution (every 2 km) during intermediate (October 2020) and near low flow conditions (August/September 2021). The tritium concentrations in surface water and groundwater and the resulting tritium inventories were used to characterize losing stream conditions Monthly tritium inventories from 2017 to 2022 revealed a mean loss for the whole period of 20.3 % and a mean gain of 21.8%. Both were probably triggered by a combination of losing stream conditions and flood-induced mass transfer of water from the aquifer back into the river as well as discharge fluctuations. At the investigated site Lehmen there were direct indications of an influence of surface water due to elevated tritium concentrations in the groundwater (up to 13.3 Bq L−1). Using radon mass balance modelling, good agreements of simulated versus measured radon data with respect to two groundwater end-member scenarios were obtained during intermediate flow (Spearman's ρ: 0.97 and 0.99; MAE: 10.1 and 3.4 Bq L−1) and near low flow (Spearman's ρ: 0.97 and 0.99; MAE: 11 and 6.5 Bq L−1). Considerable groundwater inflow was limited to the meander of Detzem, where cumulated groundwater inflow of about 19 m3 s−1 (9.5% of total discharge) and 4.2 m3 s−1 (3.8% of total discharge) was simulated during intermediate and near low flow, respectively. However, the groundwater inflow was relatively low compared to alpine streams, for example. The study will help to better identify and quantify GSI at the regional scale and provide methodological guidance for future studies focusing on inland waterways.  相似文献   
157.
158.
A useful method for increasing the signal/noise ratio of refracted waves is Common-Midpoint (CMP)-refraction seismics. With this technique the shallow underground can be described in detail using all information (amplitude, frequency, phase characteristics) of the wavetrain following the first break (first-break phase). Thus, the layering can be determined and faults, weak zones, and clefts can be identified. This paper deals with the optimization of CMP-refraction seismics used in combination with the Generalized Reciprocal Method (GRM). Theoretical studies show a close relationship of both methods to the kinematics of wave propagation. Velocities and optimum offsets determined by the GRM can be used directly in the partial Radon transformation in CMP-refraction seismics. The integration of refracted waves leads to an increase in the signal/noise ratio but simultaneously the integration boundaries must be restricted to deal only with selective parts of the investigated refractor. The result of this process is an intercept-time section which can be converted directly to a depth section using standard refraction seismic techniques. Another possibility of depth conversion is the transformation of this intercept-time section to a `pseudo-zero-offset section', known from reflection seismics. Thus, zero-offset sections can be migrated using wave-equation techniques such as Kirchhoff migration.  相似文献   
159.
Laboratory experiments with regular waves were used to investigate wave transmission by overtopping for a smooth, impermeable breakwater with a 1-in-4 slope.A resulting relationship between the transmission coefficient and a breakwater height above mean sea level normalized with a theoretical wave run-up height is reported in this paper.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号