首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   16篇
  国内免费   5篇
测绘学   8篇
大气科学   13篇
地球物理   80篇
地质学   126篇
海洋学   21篇
天文学   86篇
自然地理   5篇
  2023年   2篇
  2022年   10篇
  2021年   3篇
  2020年   13篇
  2019年   15篇
  2018年   13篇
  2017年   13篇
  2016年   19篇
  2015年   12篇
  2014年   9篇
  2013年   14篇
  2012年   21篇
  2011年   26篇
  2010年   15篇
  2009年   22篇
  2008年   20篇
  2007年   24篇
  2006年   16篇
  2005年   13篇
  2004年   14篇
  2003年   12篇
  2002年   9篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1987年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有339条查询结果,搜索用时 359 毫秒
291.
A Soft-Sphere Discrete Element Method (SSDEM) is used to simulate the rotational reshaping and disruption of cohesionless self-gravitating granular aggregates (as a representation of “rubble-pile” asteroids). Aggregates with spherical and ellipsoidal shapes are subjected to impulsive increments of their angular velocity to initiate a reshaping process leading up to the disruption of the aggregate. Internal stress fields are monitored during the process as well as critical angular velocities to initiate reshaping. In addition, the time evolution of other parameters such as filling fraction, angle of friction, mechanical energy, yield stress, semi-axes, density and mass dependence are also analysed. Several predictions from continuum theory are recovered in our simulations, in addition to further insight into the process by which cohesionless rubble piles can deform. Fundamentally different outcomes are found for frictionless grains and grains with surface friction modelled, verifying the importance of including such models in granular simulations. We find that the initiation of shape deformation is most consistently described by a Drucker–Prager failure criterion, which also provides an independent measure of the effective friction angle of our self-gravitating pile. Insight is also gained into the energetics of deformation, with most of the kinetic energy loss going into the deformation of the rubble pile, and a smaller component being internally dissipated. Finally, with this work we want to compare this computational approach with the theoretical predictions and, if possible, to mutually validate them.  相似文献   
292.
Abstract– The twin Arkenu circular structures (ACS), located in the al‐Kufrah basin in southeastern Libya, were previously considered as double impact craters (the “Arkenu craters”). The ACS consist of a NE (Arkenu 1) and a SW structure (Arkenu 2), with approximate diameters of about 10 km. They are characterized by two shallow depressions surrounded by concentric circular ridges and silica‐impregnated sedimentary dikes cut by local faults. Our field, petrographic, and textural observations exclude that the ACS have an impact origin. In fact, we did not observe any evidence of shock metamorphism, such as planar deformation features in the quartz grains of the collected samples, and the previously reported “shatter cones” are wind‐erosion features in sandstones (ventifacts). Conversely, the ACS should be regarded as a “paired” intrusion of porphyritic stocks of syenitic composition that inject the Nubia Formation and form a rather simple and eroded ring dike complex. Stock emplacement was followed by hydrothermal activity that involved the deposition of massive magnetite–hematite horizons (typical of iron oxide copper‐gold deposits). Their origin was nearly coeval with the development of silicified dikes in the surroundings. Plugs of tephritic‐phonolitic rocks and lamprophyres (monchiquites) inject the Nubian sandstone along conjugate fracture zones, trending NNW–SSE and NE–SW, that crosscut the structural axis of the basin.  相似文献   
293.
Remote sensing is proving very useful for identifying damage and planning support activities after an earthquake has stricken. Radar sensors increasingly show their value as a tool for damage detection, due to their shape-sensitiveness, their extreme versatility and operability, all weather conditions. The previous work of our research group, conducted on 1-m resolution spotlight images produced by COSMO-SkyMed, has led to the discovery of a link between some selected texture measures, computed on radar maps over single blocks of an urban area, and the damage found in these neighbourhoods. Texture-to-damage correlation was used to develop a SAR-based damage assessment method, but significant residual within-class variability makes estimations sometimes unreliable. Among the possible remedies, the injection of physical vulnerability data into the model was suggested. The idea here is to do so while keeping all the sources of data in the EO domain, by estimating physical vulnerability from the observation of high-resolution optical data on the area of interest. Although preliminary results seem to suggest that no significant improvement can be directly obtained on classification accuracy, there appears to be some link between estimated damage and estimated accuracy on which to build a more refined version of the damage estimator.  相似文献   
294.
We have performed phase equilibrium experiments in the system forsterite–enstatite–pyrope-H2O with MgCl2 or MgF2 at 1,100 °C and 2.6 GPa to constrain the solubility of halogens in the peridotite mineral assemblage and the fluid–mineral partition coefficients. The chlorine solubility in forsterite, enstatite and in pyrope is very low, 2.1–3.9 and 4.0–11.4 ppm, respectively, and it is independent of the fluid salinity (0.3–30 wt% Cl), suggesting that some intrinsic saturation limit in the crystal is reached already at very low chlorine concentrations. Chlorine is therefore exceedingly incompatible in upper-mantle minerals. The fluorine solubility is 170–336 ppm in enstatite and 510–1,110 ppm in pyrope, again independent of fluid salinity. Forsterite dissolves 1,750–1,900 ppm up to a fluid salinity of 1.6 wt% F. At higher fluorine contents in the system, forsterite is replaced by the minerals of the humite group. The lower solubility of chlorine by three orders of magnitude when compared to fluorine is consistent with increasing lattice strain. Fluid–mineral partition coefficients are 100–102 for fluorine and 103–105 for chlorine. Since the latter values are orders of magnitude higher than those for hydroxyl partitioning, fluid flow from the subducting slab through the mantle wedge will lead to an efficient sequestration of H2O into the nominally anhydrous minerals in the wedge, whereas chlorine becomes enriched in the residual fluid. Simple mass balance calculations reveal that rock–fluid ratios of up to >3,000 are required to produce the elevated Cl/H2O ratios observed in some primitive arc magmas. Accordingly, fluid flow from the subducted slab into the zone of melting in the mantle wedge does not only occur rapidly in narrow channels, but at least in some subduction zones, fluid pervasively infiltrates the mantle peridotite and interacts with a large volume of the mantle wedge. Together with the Cl/H2O ratios of primitive arc magmas, our data therefore constrain the fluid flow regime below volcanic arcs.  相似文献   
295.
We present the first set of chaotic mixing experiments performed using natural basaltic and rhyolitic melts. The mixing process is triggered by a recently developed apparatus that generates chaotic streamlines in the melts, mimicking the development of magma mixing in nature. The study of the interplay of physical dynamics and chemical exchanges between melts is carried out performing time series mixing experiments under controlled chaotic dynamic conditions. The variation of major and trace elements is studied in detail by electron microprobe and Laser Ablation ICP-MS. The mobility of each element during mixing is estimated by calculating the decrease in the concentration variance in time. Both major and trace element variances decay exponentially, with the value of exponent of the exponential function quantifying the element mobility. Our results confirm and quantify how different chemical elements homogenize in the melt at differing rates. The differential mobility of elements in the mixing system is considered to be responsible for the highly variable degree of correlation (linear, nonlinear, or scattered) of chemical elements in many published inter-elemental plots. Elements with similar mobility tend to be linearly correlated, whereas, as the difference in mobility increases, the plots become progressively more nonlinear and/or scattered. The results from this study indicate that the decay of concentration variance is in fact a robust tool for obtaining new insights into chemical exchanges during mixing of silicate melts. Concentration variance is (in a single measure) an expression of the influence of all possible factors (e.g., viscosity, composition, and fluid dynamic regime) controlling the mobility of chemical elements and thus can be an additional petrologic tool to address the great complexity characterizing magma mixing processes.  相似文献   
296.
The chemical composition and the crystal structure of pezzottaite [ideal composition Cs(Be2Li)Al2Si6O18; space group: ${\it{R}} \overline{\text{3}} $ c, a?=?15.9615(6) ?, c?=?27.8568(9) ?] from the type locality in Ambatovita (central Madagascar) were investigated by electron microprobe analysis in wavelength dispersive mode, thermo-gravimetric analysis, Fourier-transform infrared spectroscopy, single-crystal X-ray (at 298?K) and neutron (at 2.3?K) diffraction. The average chemical formula of the sample of pezzottaite resulted Cs1,Cs2(Cs0.565Rb0.027K0.017)Σ0.600 Na1,Na2(Na0.101Ca0.024)Σ0.125Be2.078Li0.922 Al1,Al2(Mg0.002Mn0.002Fe0.003Al1.978)Σ1.985 Si1,Si2,Si3(Al0.056Si5.944)Σ6O18·0.27H2O. The (unpolarized) IR spectrum over the region 3,800–600?cm?1 was collected and a comparison with the absorption bands found in beryl carried out. In particular, two-weak absorption bands ascribable to the fundamental H2O stretching vibrations (i.e. 3,591 and 3,545?cm?1) were observed, despite the mineral being nominally anhydrous. The X-ray and neutron structure refinements showed: (a) a non-significant presence of aluminium, beryllium or lithium at the Si1, Si2 and Si3 sites, (b) the absence (at a significant level) of lithium at the octahedral Al1, Al2 and Al3 sites and (c) a partial lithium/beryllium disordering between tetrahedral Be and Li sites.  相似文献   
297.
298.
We present a systematic analysis of all the BeppoSAX data of SGR1900+14. The observations spanning five years show that the source was brighter than usual on two occasions: ~20 days after the August 1998 giant flare and during the 105?s long X-ray afterglow following the April 2001 intermediate flare. In the latter case, we explore the possibility of describing the observed short term spectral evolution only with a change of the temperature of the blackbody component. In the only BeppoSAX observation performed before the giant flare, the spectrum of the SGR1900+14 persistent emission was significantly harder and detected also above 10 keV with the PDS instrument. In the last BeppoSAX observation (April 2002) the flux was at least a factor 1.2 below the historical level, suggesting that the source was entering a quiescent period.  相似文献   
299.
300.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号