首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   16篇
  国内免费   5篇
测绘学   8篇
大气科学   13篇
地球物理   80篇
地质学   126篇
海洋学   21篇
天文学   86篇
自然地理   5篇
  2023年   2篇
  2022年   10篇
  2021年   3篇
  2020年   13篇
  2019年   15篇
  2018年   13篇
  2017年   13篇
  2016年   19篇
  2015年   12篇
  2014年   9篇
  2013年   14篇
  2012年   21篇
  2011年   26篇
  2010年   15篇
  2009年   22篇
  2008年   20篇
  2007年   24篇
  2006年   16篇
  2005年   13篇
  2004年   14篇
  2003年   12篇
  2002年   9篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1987年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有339条查询结果,搜索用时 217 毫秒
281.
Rapid and high-magnitude North Atlantic climate oscillations following the Last Glacial Maximum have been correlated to climate change events in western North America. However, the strength of teleconnections between the North Atlantic and the interior of western North America remains poorly understood. We present a U-series calibrated speleothem record from Timpanogos Cave National Monument, located at 2040 m asl in the Wasatch Mountains of Utah, spanning 13.5–10.6 ka. Additionally, we carried out a climate reconstruction for a coeval glacier advance in the Wind River Range of Wyoming. Our results indicate that between 13.5 and 12.8 ka, the Wasatch was probably first cool and dry and then warmed. After 12.8 ka, our record suggests cool and/or wetter conditions followed by reduced moisture until 11.8 ka, followed by an early Holocene wet period. The Timpanogos record exhibits few similarities with those from the North Atlantic. Climate reconstructions of the Titcomb Basin glacier suggest modest temperature depressions relative to modern (<−3 °C) were necessary to sustain the glacier with a moderate increase in precipitation (>150%). The high-altitude speleothem record presented here provides a valuable basis for understanding latest Pleistocene–early Holocene glacial episodes in western North America.  相似文献   
282.
The Pingüino deposit, located in the low sulfidation epithermal metallogenetical province of the Deseado Massif, Patagonia, Argentina, represents a distinct deposit type in the region. It evolved through two different mineralization events: an early In-bearing polymetallic event that introduced In, Zn, Pb, Ag, Cd, Au, As, Cu, Sn, W and Bi represented by complex sulfide mineralogy, and a late Ag–Au quartz-rich vein type that crosscut and overprints the early polymetallic mineralization. The indium-bearing polymetallic mineralization developed in three stages: an early Cu–Au–In–As–Sn–W–Bi stage (Ps1), a Zn–Pb–Ag–In–Cd–Sb stage (Ps2) and a late Zn–In–Cd (Ps3). Indium concentrations in the polymetallic veins show a wide range (3.4 to 1,184 ppm In). The highest indium values (up to 1,184 ppm) relate to the Ps2 mineralization stage, and are associated with Fe-rich sphalerites, although significant In enrichment (up to 159 ppm) is also present in the Ps1 paragenesis associated with Sn-minerals (ferrokesterite and cassiterite). The hydrothermal alteration associated with the polymetallic mineralization is characterized by advanced argillic alteration within the immediate vein zone, and sericitic alteration enveloping the vein zone. Fluid inclusion studies indicate homogenisation temperatures of 308.2–327°C for Ps1 and 255–312.4°C for Ps2, and low to moderate salinities (2 to 5 eq.wt.% NaCl and 4 to 9 eq.wt.% NaCl, respectively). δ34S values of sulfide minerals (+0.76‰ to +3.61‰) indicate a possible magmatic source for the sulfur in the polymetallic mineralization while Pb isotope ratios for the sulfides and magmatic rocks (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of 17.379 to 18.502; 15.588 to 15.730 and 38.234 to 38.756, respectively) are consistent with the possibility that the Pb reservoirs for both had the same crustal source. Spatial relationships, hydrothermal alteration styles, S and Pb isotopic data suggest a probable genetic relation between the polymetallic mineralization and dioritic intrusions that could have been the source of metals and hydrothermal fluids. Mineralization paragenesis, alteration mineralogy, geochemical signatures, fluid inclusion data and isotopic data, confirm that the In-bearing polymetallic mineralization from Pingüino deposit is a distinct type, in comparison with the well-known epithermal low sulfidation mineralization from the Deseado Massif.  相似文献   
283.
284.
Dissolved organic nitrogen (DON) in near-surface (<20 m depth) waters of the Texas-Louisiana continental shelf is the predominant form of total dissolved nitrogen that is advected by the Mississippi-Atchafalaya River plume. Relatively high DON concentrations associated with low-salinity (<33 psu) waters throughout the year can be traced within the plume along the Texas-Louisiana inner shelf. DON concentrations throughout the shelf were significantly higher near the Mississippi-Atchafalaya outflow region relative to downstream inner Gulf shelf locations. Significant intercruise variations were also evident, with the highest concentrations during May 1992 and lower values in October 1992. At a fixed location off the Mississippi River outflow region DON concentration covaried inversely with salinity on time scales of hours to months, confirming that source water is a determining factor for variations of bulk DON concentrations in the region. Similar variations in upper water DON concentrations at different locations and seasons occurred in both plume and nonplume waters, which resembled the seasonal concentration changes of riverine nitrogen, and show that this pool is useful in tracing the influence of riverine-derived nitrogen on the overall nitrogen balance of the NW Gulf of Mexico’s continental shelf. Plume and nonplume DON concentrations deviated from mixing lines between riverine and oceanic endmembers, suggesting that plume waters may be a sink and nonplume waters may be a source of a labile fraction of DON in the region.  相似文献   
285.
Remote sensing is proving very useful for identifying damage and planning support activities after an earthquake has stricken. Radar sensors increasingly show their value as a tool for damage detection, due to their shape-sensitiveness, their extreme versatility and operability, all weather conditions. The previous work of our research group, conducted on 1-m resolution spotlight images produced by COSMO-SkyMed, has led to the discovery of a link between some selected texture measures, computed on radar maps over single blocks of an urban area, and the damage found in these neighbourhoods. Texture-to-damage correlation was used to develop a SAR-based damage assessment method, but significant residual within-class variability makes estimations sometimes unreliable. Among the possible remedies, the injection of physical vulnerability data into the model was suggested. The idea here is to do so while keeping all the sources of data in the EO domain, by estimating physical vulnerability from the observation of high-resolution optical data on the area of interest. Although preliminary results seem to suggest that no significant improvement can be directly obtained on classification accuracy, there appears to be some link between estimated damage and estimated accuracy on which to build a more refined version of the damage estimator.  相似文献   
286.
We have performed phase equilibrium experiments in the system forsterite–enstatite–pyrope-H2O with MgCl2 or MgF2 at 1,100 °C and 2.6 GPa to constrain the solubility of halogens in the peridotite mineral assemblage and the fluid–mineral partition coefficients. The chlorine solubility in forsterite, enstatite and in pyrope is very low, 2.1–3.9 and 4.0–11.4 ppm, respectively, and it is independent of the fluid salinity (0.3–30 wt% Cl), suggesting that some intrinsic saturation limit in the crystal is reached already at very low chlorine concentrations. Chlorine is therefore exceedingly incompatible in upper-mantle minerals. The fluorine solubility is 170–336 ppm in enstatite and 510–1,110 ppm in pyrope, again independent of fluid salinity. Forsterite dissolves 1,750–1,900 ppm up to a fluid salinity of 1.6 wt% F. At higher fluorine contents in the system, forsterite is replaced by the minerals of the humite group. The lower solubility of chlorine by three orders of magnitude when compared to fluorine is consistent with increasing lattice strain. Fluid–mineral partition coefficients are 100–102 for fluorine and 103–105 for chlorine. Since the latter values are orders of magnitude higher than those for hydroxyl partitioning, fluid flow from the subducting slab through the mantle wedge will lead to an efficient sequestration of H2O into the nominally anhydrous minerals in the wedge, whereas chlorine becomes enriched in the residual fluid. Simple mass balance calculations reveal that rock–fluid ratios of up to >3,000 are required to produce the elevated Cl/H2O ratios observed in some primitive arc magmas. Accordingly, fluid flow from the subducted slab into the zone of melting in the mantle wedge does not only occur rapidly in narrow channels, but at least in some subduction zones, fluid pervasively infiltrates the mantle peridotite and interacts with a large volume of the mantle wedge. Together with the Cl/H2O ratios of primitive arc magmas, our data therefore constrain the fluid flow regime below volcanic arcs.  相似文献   
287.
We present the first set of chaotic mixing experiments performed using natural basaltic and rhyolitic melts. The mixing process is triggered by a recently developed apparatus that generates chaotic streamlines in the melts, mimicking the development of magma mixing in nature. The study of the interplay of physical dynamics and chemical exchanges between melts is carried out performing time series mixing experiments under controlled chaotic dynamic conditions. The variation of major and trace elements is studied in detail by electron microprobe and Laser Ablation ICP-MS. The mobility of each element during mixing is estimated by calculating the decrease in the concentration variance in time. Both major and trace element variances decay exponentially, with the value of exponent of the exponential function quantifying the element mobility. Our results confirm and quantify how different chemical elements homogenize in the melt at differing rates. The differential mobility of elements in the mixing system is considered to be responsible for the highly variable degree of correlation (linear, nonlinear, or scattered) of chemical elements in many published inter-elemental plots. Elements with similar mobility tend to be linearly correlated, whereas, as the difference in mobility increases, the plots become progressively more nonlinear and/or scattered. The results from this study indicate that the decay of concentration variance is in fact a robust tool for obtaining new insights into chemical exchanges during mixing of silicate melts. Concentration variance is (in a single measure) an expression of the influence of all possible factors (e.g., viscosity, composition, and fluid dynamic regime) controlling the mobility of chemical elements and thus can be an additional petrologic tool to address the great complexity characterizing magma mixing processes.  相似文献   
288.
289.
We present a systematic analysis of all the BeppoSAX data of SGR1900+14. The observations spanning five years show that the source was brighter than usual on two occasions: ~20 days after the August 1998 giant flare and during the 105?s long X-ray afterglow following the April 2001 intermediate flare. In the latter case, we explore the possibility of describing the observed short term spectral evolution only with a change of the temperature of the blackbody component. In the only BeppoSAX observation performed before the giant flare, the spectrum of the SGR1900+14 persistent emission was significantly harder and detected also above 10 keV with the PDS instrument. In the last BeppoSAX observation (April 2002) the flux was at least a factor 1.2 below the historical level, suggesting that the source was entering a quiescent period.  相似文献   
290.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号