首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   15篇
  国内免费   5篇
测绘学   8篇
大气科学   36篇
地球物理   77篇
地质学   77篇
海洋学   14篇
天文学   44篇
综合类   3篇
自然地理   26篇
  2023年   1篇
  2022年   5篇
  2021年   12篇
  2020年   6篇
  2019年   4篇
  2018年   13篇
  2017年   15篇
  2016年   10篇
  2015年   9篇
  2014年   12篇
  2013年   21篇
  2012年   16篇
  2011年   20篇
  2010年   12篇
  2009年   16篇
  2008年   14篇
  2007年   6篇
  2006年   8篇
  2005年   9篇
  2004年   6篇
  2003年   9篇
  2002年   10篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
  1969年   1篇
  1967年   3篇
  1966年   1篇
  1965年   1篇
排序方式: 共有285条查询结果,搜索用时 15 毫秒
281.
282.
A suite of sulfate minerals were characterized spectrally, compositionally, and structurally in order to develop spectral reflectance-compositional-structural relations for this group of minerals. Sulfates exhibit diverse spectral properties, and absorption-band assignments have been developed for the 0.3-26 μm range. Sulfate absorption features can be related to the presence of transition elements, OH, H2O, and SO4 groups. The number, wavelength position, and intensity of these bands are a function of both composition and structure. Cation substitutions can affect the wavelength positions of all major absorption bands. Hydroxo-bridged Fe3+ results in absorption bands in the 0.43, 0.5, and 0.9 μm regions, while the presence of Fe2+ results in absorption features in the 0.9-1.2 μm interval. Fundamental SO bending and stretching vibration absorption bands occur in the 8-10, 13-18, and 19-24 μm regions (1000-1250, 550-770, and 420-530 cm−1). The most intense combinations and overtones of these fundamentals are found in the 4-5 μm (2000-2500 cm−1) region. Absorption features seen in the 1.7-1.85 μm interval are attributable to HOH/OH bending and translation/rotation combinations, while bands in the 2.1-2.7 μm regions can be attributed to H2O- and OH-combinations as well as overtones of SO bending fundamentals. OH- and H2O-bearing sulfate spectra are fundamentally different from each other at wavelengths below ∼6 μm. Changes in H2O/OH content can shift SO band positions due to change in bond lengths and structural rearrangement. Differences in absorption band wavelength positions enable discrimination of all the sulfate minerals used in this study in a number of wavelength intervals. Of the major absorption band regions, the 4-5 μm region seems best for identifying and discriminating sulfates in the presence of other major rock-forming minerals.  相似文献   
283.
Abstract

A hydraulic parametrization is developed for peatland environments in the Canadian Land Surface Scheme (CLASS). Three ‐wetland soil classes account for the typical variation in the hydraulic characteristics of the uppermost 0.5 m of organic soils. Review of the literature reveals that saturated hydraulic conductivity varies from a median of 1.0 × 10?7m/s in deeply humified sapric peat to 2.8 × 10?4 m/s in relatively undecomposed fibric peat. Average pore volume fraction ranges from 0.83 to 0.93. Parameters have been designed for the soil moisture characteristic curves for fibric, hemic and sapric peat using the Campbell (1974) equation employed in CLASS, and the van Genuchten (1980) formulation. There is little difference in modelled soil moisture between the two formulations within the range of conditions normally found in peatlands. Validation of modelled water table depth and peat temperature is performed for a fen in northern Québec and a bog in north‐central Minnesota. The new parametrization results in a more realistic simulation of these variables in peatlands than the previous version of CLASS, in which unrealistic mineral soil “equivalents “ were used for wetland soil climate modelling.  相似文献   
284.
The aim of this study was to develop an advanced parameterization of the snow-free land surface albedo for climate modelling describing the temporal variation of surface albedo as a function of vegetation phenology on a monthly time scale. To estimate the effect of vegetation phenology on snow-free land surface albedo, remotely sensed data products from the Moderate-Resolution Imaging Spectroradiometer (MODIS) on board the NASA Terra platform measured during 2001 to 2004 are used. The snow-free surface albedo variability is determined by the optical contrast between the vegetation canopy and the underlying soil surface. The MODIS products of the white-sky albedo for total shortwave broad bands and the fraction of absorbed photosynthetically active radiation (FPAR) are analysed to separate the vegetation canopy albedo from the underlying soil albedo. Global maps of pure soil albedo and pure vegetation albedo are derived on a 0.5° regular latitude/longitude grid, re-sampling the high-resolution information from remote sensing-measured pixel level to the model grid scale and filling up gaps from the satellite data. These global maps show that in the northern and mid-latitudes soils are mostly darker than vegetation, whereas in the lower latitudes, especially in semi-deserts, soil albedo is mostly higher than vegetation albedo. The separated soil and vegetation albedo can be applied to compute the annual surface albedo cycle from monthly varying leaf area index. This parameterization is especially designed for the land surface scheme of the regional climate model REMO and the global climate model ECHAM5, but can easily be integrated into the land surface schemes of other regional and global climate models.  相似文献   
285.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号