首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   3篇
大气科学   3篇
地球物理   12篇
地质学   24篇
海洋学   6篇
天文学   1篇
自然地理   15篇
  2022年   1篇
  2019年   1篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2011年   2篇
  2010年   6篇
  2008年   2篇
  2007年   4篇
  2006年   6篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1994年   1篇
  1992年   2篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
  1973年   1篇
排序方式: 共有61条查询结果,搜索用时 31 毫秒
11.
Deglacial sequences typically include backstepping grounding zone wedges and prevailing glaciomarine depositional facies. However, in coastal domains, deglacial sequences are dominated by depositional systems ranging from turbiditic to fluvial facies. Such deglacial sequences are strongly impacted by glacio‐isostatic rebound, the rate and amplitude of which commonly outpaces those of post‐glacial eustatic sea‐level rise. This results in a sustained relative sea‐level fall covering the entire depositional time interval. This paper examines a Late Quaternary, forced regressive, deglacial sequence located on the North Shore of the St. Lawrence Estuary (Portneuf Peninsula, Québec, Canada) and aims to decipher the main controls that governed its stratigraphic architecture. The forced regressive deglacial sequence forms a thick (>100 m) and extensive (>100 km2) multiphased deltaic complex emplaced after the retreat of the Laurentide Ice Sheet margin from the study area ca 12 500 years ago. The sedimentary succession is composed of ice‐contact, glaciomarine, turbiditic, deltaic, fluvial and coastal depositional units. A four‐stage development is recognized: (i) an early ice‐contact stage (esker, glaciomarine mud and outwash fan); (ii) an in‐valley progradational stage (fjord head or moraine‐dammed lacustrine deltas) fed by glacigenics; (iii) an open‐coast deltaic progradation, when proglacial depositional systems expanded beyond the valley outlets and merged together; and (iv) a final stage of river entrenchment and shallow marine reworking that affected the previously emplaced deltaic complex. Most of the sedimentary volume (10 to 15 km3) was emplaced during the three‐first stages over a ca 2 kyr interval. In spite of sustained high rates of relative sea‐level fall (50 to 30 mm·year?1), delta plain accretion occurred up to the end of the proglacial open‐coast progradational stage. River entrenchment only occurred later, after a significant decrease in the relative sea‐level fall rates (<30 mm·year?1), and was concurrent with the formation and preservation of extensive coastal deposits (raised beaches, spit platform and barrier sands). The turnaround from delta plain accretion to river entrenchment and coastal erosion is interpreted to be a consequence of the retreat of the ice margin from the river drainage basins that led to the drastic drop of sediment supply and the abrupt decrease in progradation rates. The main internal stratigraphic discontinuity within the forced regressive deglacial sequence does not reflect changes in relative sea‐level variations.  相似文献   
12.
Summary. A preliminary study of the aftershocks of three earthquakes that occurred near to Corinth (Greece) in 1981 is combined with observations of the morphology and faulting to understand the evolution of the Eastern Gulf of Corinth. The well located aftershocks form a zone 60km long and 20km wide. They do not lie on the main fault planes and are mostly located between the north-dipping faulting on which the first two earthquakes occurred and the south-dipping faulting associated with the third event. A cluster of aftershocks also lies in the footwall of the eastern end of the south-dipping fault of the third event.
Morphologically, it is observed that in the evolution of the Eastern Gulf of Corinth, antithetic faulting apparently predates the appearance of the main faulting at the surface. This evolution can be explained by motion on a deep seated, shallow angle, aseismic normal fault. A model based on such a fault also accounts for the aftershock distribution of the 1981 earthquakes.  相似文献   
13.
Since lenses of chert are common within the volcano-sedimentary succession hosting the massive sulphide deposits of the Iberian Pyrite Belt (Spain and Portugal), we examined numerous chert occurrences, both petrographically and geochemically, to test their possible value for massive sulphide exploration. The chert is found at two main lithostratigraphic levels (upper and lower) that are also interpreted as massive-sulphide bearing. In both cases the chert is located at the top of acidic volcanic sequences or in the associated sediments; we have not been able to observe the relationships between massive sulphides and chert, but some of the large orebodies of the Province (Lousal, La Zarza, Tharsis, Planes-San Antonio body of Rio Tinto, Neves) are described as being locally capped by chert facies. Four main types are recognized among the chert and associated facies: (1) red hematitic chert?±?magnetite; (2) radiolarian and/or sedimentary-textured (conglomeratic) chert with hematite and/or Mn oxides; (3) pale sulphidic chert; (4) rhodonite and/or Mn carbonate?±?magnetite facies. In the Spanish part of the Province the radiolarian chert is confined to the upper level; the distribution of the other types appears to be haphazard. The hydrothermal origin of the South Iberian chert is shown by its high Fe-Mn and low Co-Ni-Cu contents. The presence of small positive Ce anomalies indicates a shallow marine environment (shelf or epicontinental sea), which is consistent with the volcanological and sedimentological data. The chert was emplaced below the sea floor through chemical precipitation and/or through alteration and replacement of the country rock, residual traces of which are ghost phenocrysts and high Al, Ti and rare earth contents. Macro- and microscopic relationships indicate that the oxide facies (hematite?±?magnetite) formed first, probably providing a protective insulating cover against the marine environment and enabling an evolution towards sulphide facies; a phase of Mn?carbonate and silicate + quartz?±?chlorite + sulphides appears to be even later. It was not possible, through discrimination, to isolate a chert that could be considered as representing a lateral marker of massive sulphides; moreover, both field observations and geochemical data seem to indicate a relative independence of this siliceous sulphide hydrothermal activity from the hydrothermal activity giving rise to the massive sulphides. Such is also indicated by the lead isotopic signature of the chert, which is appreciably more radiogenic than that of the massive sulphides; the lead enrichment in the sulphidic chert facies indicates the participation of a different source (sediments, sea water) from that of the massive sulphides. The hypothesis of an independent hydrothermal “chert” event can thus be envisaged, wherein the chert reflects submarine low-temperature hydrothermal activity that is most apparent during a “break” within the volcano-sedimentary succession and which may locally have competed with the high-temperature hydrothermal activity giving rise to the massive sulphides. The interest of the chert thus rests in its palaeodynamic significance, as a marker of periods of volcanic quiescence, and in its possible role as a protective insulating cap favourable to the deposition of massive sulphides.  相似文献   
14.
15.
The Romanian earthquake of August 30, 1986 is the second largest intermediate depth event in this area since the worldwide deployment of digital instrumentation, and the first one since the installation of GEOSCOPE network. It offers the unique opportunity to document this well-known but poorly understood zone of deep continental seismicity using high quality teleseismic data in different frequency bands. The source is well constrained both from very-long period surface wave data observed on GEOSCOPE stations and, independently, from body wave modelling at various worldwide stations. The depth obtained is approximately 140 kilometers, the seismic moment, 0.8 1027 dyne-cm and the mechanism from both data sets is very similar to that of the previous 1940 and 1977 Vancrea events, indicating that these events, although having occurred at noticeably different depths, are expressions of the same tectonic process. However, from the detailed study of the source using broadband data, it can be inferred that the source presents much less complexity than the 1977 event.  相似文献   
16.
Non-destructive neutron-activation analysis of Zr and Hf in gem-zircons from undersatured basic rocks of old shields: French Central Massif, Indochina, Madagascar, Atakor (Sahara). The Zr contents are close to the theoretical value in zircon; the Hf contents vary from 0.51 to 0.74%. Statistically the Hf averages are identical for the main deposits studied. The Zr/Hf ratio is 75 for the European and Asiatic deposits and 80 for the African shield. The Dy/Eu ratio has the same homogeneity in the main deposits. These values tend to sustain the following hypothesis: zircons occurred during an early paragenesis of undersaturated alkaline magmas.  相似文献   
17.
18.
The S wave velocity distribution in the Earth’s crust and the first two hundred kilometers of the upper mantle is inferred from data of a seismological linear network including 18 broadband stations installed in the framework of the international teleseismic experiment carried out in 2003 in the south of Siberia and in Mongolia. Models were constructed by using P-to-S received function inversion beneath each station. Vertical cross sections of S wave velocities from the surface to depths of 65 and 270 km covering the entire 1000-km profile are constructed by the linear spline interpolation of individual velocity models. The vertical sections are also represented as anomalies relative to the standard velocity model. The most intense low velocity anomalies (from ?3 to ?6%) in the crust and upper mantle are identified beneath the Sayan, Khamar-Daban, and Khangai highlands and the Djida fold zone and agree both with other geophysical data and with the distribution of Late Cenozoic volcanic fields. The results of this work suggest that the activation of Mongolian-Siberian highlands is largely connected with uplift of the asthenosphere to the base of the crust.  相似文献   
19.
We determined the lithium isotope fractionation between synthetic Li-bearing serpentine phases lizardite, chrysotile, antigorite, and aqueous fluid in the P,T range 0.2–4.0 GPa, 200–500°C. For experiments in the systems lizardite-fluid and antigorite-fluid, 7Li preferentially partitioned into the fluid and Δ7Li values followed the T-dependent fractionation of Li-bearing mica-fluid (Wunder et al. 2007). By contrast, for chrysotile-fluid experiments, 7Li weakly partitioned into chrysotile. This contrasting behavior might be due to different Li environments in the three serpentine varieties: in lizardite and antigorite lithium is sixfold coordinated, whereas in chrysotile lithium is incorporated in two ways, octahedrally and as Li-bearing water cluster filling the nanotube cores. Low-temperature IR spectroscopic measurements of chrysotile showed significant amounts of water, whose freezing point was suppressed due to the Li contents and the confined geometry of the fluid within the tubes. The small inverse Li-isotopic fractionation for chrysotile-fluid results from intra-crystalline Li isotope fractionation of octahedral Li[6] with preference to 6Li and lithium within the channels (Li[Ch]) of chrysotile, favoring 7Li. The nanotubes of chrysotile possibly serve as important carrier of Li and perhaps also of other fluid-mobile elements in serpentinized oceanic crust. This might explain higher Li abundances for low-T chrysotile-bearing serpentinites relative to high-T serpentinites. Isotopically heavy Li-bearing fluids of chrysotile nanotubes could be released at relatively shallow depths during subduction, prior to complete chrysotile reactions to form antigorite. During further subduction, fluids produced during breakdown of serpentine phases will be depleted in 7Li. This behavior might explain some of the Li-isotopic heterogeneities observed for serpentinized peridotites.  相似文献   
20.
We analyse the source process and the aftershock distribution of the April 21, 1995, Ventimiglia, ML=4.7 earthquake using the records of permanent high dynamic broad-band seismic stations and a temporary network deployed on land and at sea few hours after the earthquake. This event occurred on the western Mediterranean coast, near the border between Italy and France, at a depth of 9 km, at a point where Alpine tectonic units and Late Oligocene extensional structure overlap and are currently undergoing compressional stress. The focal solutions of the mainshock and three aftershocks depict a dominant reverse faulting with an important strike-slip component, which underlines two nodal planes: a NW–SE-dipping north fault and a NE–SW-dipping south fault. We operate a careful re-location of the aftershocks using a master-event technique and data from the temporal network and obtain a predominant NW–SE alignment. Then, we analyse the rupture process using an empirical Green function approach. We find that the mainshock broke a 0.5 to 1 km fault length and that the rupture propagated during 0.1–0.2 s probably in a SE direction. Those two arguments, together with the recent fault trace that exists close to the epicentre, leads us to propose that this event expresses the reactivation of an old transverse NW–SE structure with a dextral movement. This study thus emphasizes the role of inherited, deep-rooted, transcurrent features in the tectonic reactivation of this passive margin. It also underlines the importance of combining short-period and broad-band seismology to better resolve and understand regional tectonic processes in areas of moderate seismic activity and complex geology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号