首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8576篇
  免费   338篇
  国内免费   128篇
测绘学   166篇
大气科学   709篇
地球物理   2010篇
地质学   3021篇
海洋学   803篇
天文学   1251篇
综合类   37篇
自然地理   1045篇
  2022年   32篇
  2021年   114篇
  2020年   153篇
  2019年   156篇
  2018年   202篇
  2017年   196篇
  2016年   241篇
  2015年   201篇
  2014年   263篇
  2013年   474篇
  2012年   286篇
  2011年   411篇
  2010年   375篇
  2009年   476篇
  2008年   398篇
  2007年   409篇
  2006年   343篇
  2005年   292篇
  2004年   284篇
  2003年   301篇
  2002年   241篇
  2001年   203篇
  2000年   223篇
  1999年   165篇
  1998年   151篇
  1997年   132篇
  1996年   147篇
  1995年   132篇
  1994年   124篇
  1993年   102篇
  1992年   100篇
  1991年   69篇
  1990年   99篇
  1989年   78篇
  1988年   84篇
  1987年   94篇
  1986年   85篇
  1985年   111篇
  1984年   131篇
  1983年   123篇
  1982年   105篇
  1981年   78篇
  1980年   58篇
  1979年   71篇
  1978年   69篇
  1977年   63篇
  1976年   61篇
  1975年   69篇
  1974年   55篇
  1973年   68篇
排序方式: 共有9042条查询结果,搜索用时 328 毫秒
511.
The Stansbury shoreline, one of the conspicuous late Pleistocene shorelines of Lake Bonneville, consists of tufa-cemented gravel and barrier beaches within a vertical zone of about 45 m, the lower limit of which is 70 m above the modern average level of Great Salt Lake. Stratigraphic evidence at a number of localities, including new evidence from Crater Island on the west side of the Great Salt Lake Desert, shows that the Stansbury shoreline formed during the transgressive phase of late Pleistocene Lake bonneville (sometime between about 22,000 and 20,000 yr B.P.). Tufa-cemented gravel and barrier beaches were deposited in the Stansbury shorezone during one or more fluctuations in water level with a maximum total amplitude of 45 m. We refer to the fluctuations as the Stansbury oscillation. The Stansbury oscillation cannot have been caused by basin-hypsometric factors, such as stabilization of lake level at an external overflow threshold or by expansion into an interior subbasin, or by changes in drainage basin size. Therefore, changes in climate must have caused the lake level to reverse its general rise, to drop about 45 m in altitude (reducing its surface area by about 18%, 5000 km2), and later to resume its rise. If the sizes of Great Basin lakes are controlled by the mean position of storm tracks and the jetstream, which as recently postulated may be controlled by the size of the continental ice sheets, the Stansbury oscillation may have been caused by a shift in the jetstream during a major interstade of the Laurentide ice sheet.  相似文献   
512.
The local subduction geometry at a site south of Puget Sound in western Washington is investigated using teleseismicP-waveforms recorded on a three-component event triggered seismograph. The data are processed using source equalization deconvolution in order to isolate locally convertedP-to-S arrivals and stacked to improve the signal-to-noise ratio. Stable arrivals in the radial component indicate an oceanic Moho within the subducted slab at a depth of about 53 km beneath the station. Observed amplitude variations with azimuth in the radial data, as well as qualitative aspects of the tangential data, are used to establish a slab dip of 16° to the southeast. Our results are compatible with previous results from a site 60 km to the west, and further confirm a substantial warp in the regional geometry of the subducted Juan de Fuca plate.  相似文献   
513.
A rock cylinder, containing a clay-filled sawcut making an angle of 30° to the sample axis, was deformed at constant confining and pore pressures and constant remote shortening rate. The sawcut surfaces contained a series of regularly spaced ridges and grooves oriented perpendicular to the direction of shear. The interaction of these grooved surfaces resulted in a sliding strength which varied periodically with displacement. By varying the effective machine stiffness through the use of an electronic feedback circuit, a range of stable and unstable slip behavior was achieved. In this way, we examined fault slip behavior which was dominated by displacement-dependent strength.  相似文献   
514.
515.
516.
The submarine Mahukona Volcano, west of the island of Hawaii, is located on the Loa loci line between Kahoolawe and Hualalai Volcanoes. The west rift zone ridge of the volcano extends across a drowned coral reef at about-1150 m and a major slope break at about-1340 m, both of which represent former shoreines. The summit of the volcano apparently reached to about 250 m above sea level (now at-1100 m depth) did was surmounted by a roughly circular caldera. A econd rift zone probably extended toward the east or sutheast, but is completely covered by younger lavas from the adjacent subaerial volcanoes. Samples were vecovered from nine dredges and four submersible lives. Using subsidence rates and the compositions of flows which drape the dated shoreline terraces, we infer that the voluminous phase of tholeiitic shield growth ended about 470 ka, but tholeiitic eruptions continued until at least 435 ka. Basalt, transitional between tholeiitic and alkalic basalt, erupted at the end of tholeiitic volcanism, but no postshield-alkalic stage volcanism occurred. The summit of the volcano apparently subcided below sea level between 435 and 365 ka. The tholeiitic lavas recovered are compositionally diverse.  相似文献   
517.
518.
Compositional features of 93 samples of primitive Pliocene to recent basalts erupted along the Brothers Fault Zone in the northernmost Basin and Range indicate that they were derived from a shallow mantle source and underwent only minor shallow-level fractionation. Simple mass-balance modelling can derive these basaltic bulk compositions by removal of small amounts of observed crystalline phases from glass compositions produced in peridotite melting experiments. Additional support comes from phase equilibria data on other magnesian basalts having similar bulk compositions. The eruption of these lavas without substantial subcrustal fractionation was probably promoted by progressive extension along the Brothers Fault Zone. This origin is in sharp contrast to that generally proposed for mid-Miocene Columbia River and Steens Mountain basalts, which show clear evidence in their evolved compositions (e.g. Mg # ~ 40) of having stagnated at shallow depth where they differentiated to nearly basaltic andesite compositions. Bulk compositions of northern Basin and Range silicic rocks, together with physical and thermal considerations, suggest that they, like their counterparts in the Snake River Plain, were products of crustal anatexis driven by the injection of mafic magmas, but with meta-volcaniclastic protoliths rather than Archaean basement rocks, as in the case of the Snake River Plain rhyolites. These petrologic features suggest that the arrival of the mantle plume presently beneath Yellowstone produced or strongly influenced most late Cenozoic magmatism in the Oregon northern Basin and Range. This model accounts for many features of the northern Basin and Range in Oregon: (1) the change in basaltic character about 10 to 8 Ma ago from voluminous, evolved Columbia River/Steens lavas to smaller-volume primitive lavas and the lack of younger lavas atop the Columbia River Basalts; (2) the lack of an obvious track of the Yellowstone hot spot west of the Oregon-Idaho-Nevada tri-state area; (3) the “mirror-image” age relationship of silicic rocks in the northern Basin and Range and Snake River Plain; (4) the formation of silicic rocks by crustal anatexis and the general decrease in their volumes with time in Oregon but not along the Snake River Plain; (5) the high elevation of the region; and (6) the high surface heat flow in the Oregon northern Basin and Range. The proposed model obviates the controversy surrounding the pre-Miocene history of the Yellowstone plume by proposing that the plume initiated about 18 Ma ago.  相似文献   
519.
Field observations suggest that burrowing activity is the primary mode of sediment transport currently active in a small grassland drainage basin in Marin County, California. Spatial concentrations of the 1150 gopher mounds surveyed vary from 0-16 mounds m?2 on interfluves to 0.32 mounds m?2 on sideslopes and in the topographic hollow, with localized concentrations of up to 2.88 mounds m?2 on the margins of the colluvial deposit. Simple models of sediment transport by burrowing activity yield estimates of between 0.91 and 2.33 cm3 cm?1 yr?1 for the basin as a whole, with absolute minimum and maximum rates of 0.48 and 631 cm3 cm?1 yr?1. These values are similar to those previously estimated for this area (Lehre, 1982) and are nearly an order-of-magnitude less than average long-term sediment transport rates at the same site (Reneau, 1988).  相似文献   
520.
Coherent structures in turbulent flow above a midlatitude deciduous forest are identified using a wavelet analysis technique. Coupling between motions above the canopy (z/h=1.5, whereh is canopy height) and within the canopy (z/h=0.6) are studied using composite velocity and temperature fields constructed from 85 hours of data. Data are classified into winter and summer cases, for both convective and stable conditions. Vertical velocity fluctuations are in phase at both observation levels. Horizontal motions associated with the structures within the canopy lead those above the canopy, and linear analysis indicates that the horizontal motions deep in the canopy should lead the vertical motions by 90°. On average, coherent structures are responsible for only about 40% of overall turbulent heat and momentum fluxes, much less than previously reported. However, our large data set reveals that this flux fraction comes from a wide distribution that includes much higher fractions in its upper extremes. The separation distanceL s between adjacent coherent structures, 6–10h, is comparable to that obtained in previous observations over short canopies and in the laboratory. Changes in separation between the summer and winter (leafless) conditions are consistent withL s being determined by a local horizontal wind shear scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号