首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8576篇
  免费   338篇
  国内免费   128篇
测绘学   166篇
大气科学   709篇
地球物理   2010篇
地质学   3021篇
海洋学   803篇
天文学   1251篇
综合类   37篇
自然地理   1045篇
  2022年   32篇
  2021年   114篇
  2020年   153篇
  2019年   156篇
  2018年   202篇
  2017年   196篇
  2016年   241篇
  2015年   201篇
  2014年   263篇
  2013年   474篇
  2012年   286篇
  2011年   411篇
  2010年   375篇
  2009年   476篇
  2008年   398篇
  2007年   409篇
  2006年   343篇
  2005年   292篇
  2004年   284篇
  2003年   301篇
  2002年   241篇
  2001年   203篇
  2000年   223篇
  1999年   165篇
  1998年   151篇
  1997年   132篇
  1996年   147篇
  1995年   132篇
  1994年   124篇
  1993年   102篇
  1992年   100篇
  1991年   69篇
  1990年   99篇
  1989年   78篇
  1988年   84篇
  1987年   94篇
  1986年   85篇
  1985年   111篇
  1984年   131篇
  1983年   123篇
  1982年   105篇
  1981年   78篇
  1980年   58篇
  1979年   71篇
  1978年   69篇
  1977年   63篇
  1976年   61篇
  1975年   69篇
  1974年   55篇
  1973年   68篇
排序方式: 共有9042条查询结果,搜索用时 576 毫秒
261.
 Tracer diffusion coefficients of Mg in natural aluminosilicate garnets of composition Alm38Pyr50Gr10Sp2 and Alm73Pyr21Gr5Sp1 have been measured at 1 bar, 750-850° C and at 8.5 GPa, 1300° C by chemically depositing a salt layer enriched in 26Mg on the specially prepared surface of a garnet single crystal. Diffusion anneals at 1 atmosphere (101325 Pa) were carried out at a controlled f O 2 of ∼10−17.5 bars maintained by a flowing gas mix of CO-CO2. Annealing conditions were carefully chosen to avoid decomposition of garnet by redox reactions. High pressure anneals were carried out in a multianvil apparatus. Induced diffusion profiles (0.1–0.6 μm) were measured by an ion-microprobe with SIMS attachment. Diffusion coefficients at 1 atmosphere are in excellent agreement with extrapolation of data from high P-T experiments (Loomis et al. 1985; Chakraborty and Ganguly 1992) and also with the low temperature (750–900° C) dataset of Cygan and Lasaga (1985) if the diffusion coefficients are assumed to be proportional to f O 2 1/6. Such an f O 2 dependence, however, makes this dataset inconsistent with the recent dataset of Schwandt et al. (1995) on garnets of composition (Alm15Pyr72Gr13Sp0) unless a strong compositional dependence of Mg tracer diffusivity for Mg-rich garnets is invoked. The present experimental results show that such a compositional dependence is weak to non-existent for garnets with >38 mole percent almandine component. It is emphasized that the temperature dependence of diffusion coefficients at constant oxygen fugacities (activation energy ≈54 kcal/mol) are different from that along an oxygen fugacity buffer (activation energy ≈64.5 kcal/mol), as already pointed out by Chakraborty and Ganguly (1991). This distinction is of importance for modelling natural processes. The measurements at low temperatures either eliminate the need for, or greatly reduce the uncertainty of, extrapolation of laboratory data for modelling metamorphic processes. The high pressure results combined with those from Chakraborty and Ganguly (1992) and Loomis et al. (1985) indicate that pressure dependence of Mg tracer diffusivity in garnets is much stronger than that in forsterite (Chakraborty et al. 1994). This difference in pressure dependence of diffusivity may be caused by the difference in compressibility of the coordination polyhedra of Mg between olivines and garnets. Activation volumes of Mg tracer diffusion as high as 8 cm3/mol may be estimated using the present data in combination with earlier results. These data suggest that at a temperature of 1300° C, Mg tracer diffusion rates in garnets will decrease by an order of magnitude for every 100 km depth. The pressure effect will be stronger at lower temperatures. For calculations involving diffusion coefficients of garnets at high pressures (e.g. mantle xenoliths, eclogites) the pressure dependence of diffusivity must be taken into account. Received: 21 December 1994 / Accepted: 22 September 1995  相似文献   
262.
263.
Liquid metal-liquid silicate partitioning of Fe, Ni, Co, P, Ge, W and Mo among a carbon-saturated metal and a variety of silicate melts (magnesian-tholeiitic-siliceous-aluminous-aluminosiliceous basalts) depends modestly to strongly upon silicate melt structure and composition. Low valency siderophile elements, Fe, Ni and Co, show a modest influence of silicate melt composition on partitioning. Germanium shows a moderate but consistent preference for the depolymerized magnesian melt. High valency siderophile elements, P, Mo, and W, show more than an order of magnitude decrease in metal-silicate partition coefficients as the silicate melt becomes more depolymerized. Detailed inspection of our and other published W data shows that polymerization state, temperature and pressure are more important controls on W partitioning than oxidation state. For this to be true for a high and variable valence element implies a secondary role in general for oxidation state, even though some role must be present. Equilibrium core segregation through a magma ocean of ‘ultrabasic’ composition can provide a resolution to the ‘excess’ abundances of Ge, P, W and Mo in the mantle, but the mantle composition alone cannot explain the excess abundances of nickel and cobalt in chondritic proportions.  相似文献   
264.
265.
Measurements of the activation energy of electrical conductance and desiccation rates on subtidal marine algae from Florida were compared to similar data from the Bay of Fundy, Nova Scotia, on intertidal marine algae frequently subjected to long periods of exposure to air. We have developed a method for calculating the reaction rate constant of desiccation of fully hydrated marine algae. Values of activation energies and desiccation rate constants are consistent with the requirements for survival of these algae under widely different environmental conditions.  相似文献   
266.
267.
268.
We consider the response of a deep unconfined horizontal aquifer to steady, annual, and monthly recharge. A groundwater divide and a zero head reservoir constrain the aquifer, so that sinusoidal monthly and aperiodic annual recharge fluctuations create transient specific discharge near the reservoir and an unsteady water table elevation inland. One existing and two new long-term data sets from the Plymouth-Carver Aquifer in southeastern Massachusetts calibrate and confirm hydraulic properties in a set of analytical models. [Geohydrology and simulated groundwater flow, 1992] data and a new power law for tritiugenic helium to tritium ratios calibrate the steady recharge that drives the classical parabolic model of steady hydraulics [Applied Hydrogeology, 2001]. Observed water table and gradient fluctuations calibrate the transient recharge models. In the latter regard, monitoring wells within 1 km of Buttermilk Bay exhibit appreciable specific discharge and reduced water table fluctuations. We apply [Trans Am Geophys Union 32(1951)238] periodic model to the monthly hydraulics and a recharge convolution integral [J Hydrol 126(1991)315] to annual flow. An infiltration fraction of 0.79 and a consumptive use coefficient of 1.08×10−8 m/s °C relate recharge to precipitation and daylight weighted temperature across all three time scales. Errors associated with this recharge relation decrease with increasing time scale.  相似文献   
269.
270.
Abstract Several differently scaled strike‐slip faults were examined. The faults shared many geometric features, such as secondary fractures and linkage structures (damage zones). Differences in fault style were not related to specific scale ranges. However, it was recognized that differences in style may occur in different tectonic settings (e.g. dilational/contractional relays or wall/linkage/tip zones), different locations along the master fault or different fault evolution stages. Fractal dimensions were compared for two faults (Gozo and San Andreas), which supports the idea of self‐similarity. Fractal dimensions for traces of faults and fractures of damage zones were higher (D ~1.35) than for the main fault traces (D ~1.005) because of increased complexity due to secondary faults and fractures. Based on the statistical analysis of another fault evolution study, single event movements in earthquake faults typically have a maximum earthquake slip : rupture length ratio of approximately 10?4, although this has only been established for large earthquake faults because of limited data. Most geological faults have a much higher maximum cumulative displacement : fault length ratio; that is, approximately 10?2 to 10?1 (e.g. Gozo, ~10?2; San Andreas, ~10?1). The final cumulative displacement on a fault is produced by accumulation of slip along ruptures. Hence, using the available information from earthquake faults, such as earthquake slip, recurrence interval, maximum cumulative displacement and fault length, the approximate age of active faults can be estimated. The lower limit of estimated active fault age is expressed with maximum cumulative displacement, earthquake slip and recurrence interval as T ? (dmax /u) · I(M).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号