首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8590篇
  免费   275篇
  国内免费   129篇
测绘学   165篇
大气科学   709篇
地球物理   2003篇
地质学   3018篇
海洋学   797篇
天文学   1235篇
综合类   37篇
自然地理   1030篇
  2022年   33篇
  2021年   115篇
  2020年   153篇
  2019年   156篇
  2018年   202篇
  2017年   195篇
  2016年   241篇
  2015年   200篇
  2014年   260篇
  2013年   472篇
  2012年   283篇
  2011年   409篇
  2010年   375篇
  2009年   474篇
  2008年   397篇
  2007年   407篇
  2006年   340篇
  2005年   292篇
  2004年   282篇
  2003年   300篇
  2002年   239篇
  2001年   200篇
  2000年   219篇
  1999年   164篇
  1998年   149篇
  1997年   132篇
  1996年   144篇
  1995年   131篇
  1994年   124篇
  1993年   101篇
  1992年   100篇
  1991年   68篇
  1990年   97篇
  1989年   78篇
  1988年   84篇
  1987年   94篇
  1986年   84篇
  1985年   110篇
  1984年   131篇
  1983年   122篇
  1982年   105篇
  1981年   77篇
  1980年   57篇
  1979年   71篇
  1978年   67篇
  1977年   61篇
  1976年   61篇
  1975年   69篇
  1974年   55篇
  1973年   68篇
排序方式: 共有8994条查询结果,搜索用时 15 毫秒
101.
Evaluations of tidal wetland restoration efforts suffer from a lack of appropriate reference sites and standardized methods among projects. To help address these issues, the National Estuarine Research Reserve System (NERRS) and the NOAA Restoration Center engaged in a partnership to monitor ecological responses and evaluate 17 tidal wetland restoration projects associated with five reserves. The goals of this study were to (1) determine the level of restoration achieved at each project using the restoration performance index (RPI), which compares change in parameters over time between reference and restoration sites, (2) compare hydrologic and excavation restoration projects using the RPI, (3) identify key indicator parameters for assessing restoration effectiveness, and (4) evaluate the value of the NERRS as reference sites for local restoration projects. We found that the RPI, modified for this study, was an effective tool for evaluating relative differences in restoration performance; most projects achieved an intermediate level of restoration from 2008 to 2010, and two sites became very similar to their paired reference sites, indicating that the restoration efforts were highly effective. There were no differences in RPI scores between hydrologic and excavation restoration project types. Two abiotic parameters (marsh platform elevation and groundwater level) were significantly correlated with vegetation community structure and thus can potentially influence restoration performance. Our results highlight the value of the NERRS as reference sites for assessing tidal wetland restoration projects and provide improved guidance for scientists and restoration practitioners by highlighting the RPI as a trajectory analysis tool and identifying key monitoring parameters.  相似文献   
102.
Temperature is one of the variables that influence the elasto-plastic behavior and integrity of rock outcrops. Fluctuations in temperature can trigger alteration of some of the mineral properties and impact the brittle-plastic transition. Initiation and propagation of thermally induced tension cracks tend to weaken most rock types. The principal goal of this study was to anticipate impacts of thermal stress-strain cycles on the dynamic response of representative rock units exposed in the Khewra Gorge of the Salt Range Punjab of Pakistan. Ten types of sedimentary rock units were sampled, including marl, dolomite, three types of limestone, and five different sandstones exhibiting varying characteristics in outcrop. Boulder specimens were collected from the field and transported to the laboratory to prepare 50 drill cores that could be subjected to thermal cycling between 50 and 200 °C in increments of 50 °C. Room temperature core samples were tested using an Erudite resonance frequency meter to measure their Q-factors and the resonance frequency (Fr) at an applied loading frequency of 7 KHz with 0.01 V output voltage. Results suggest that thermal cycling tends to reduce the dynamic Young’s modulus (Ed) and Q-factor. Other parameters, such as damping ratio (ξ), specific damping capacity (Ψ), and loss factor (?) appeared to increase with increasing temperature cycles, likely as a result of developing thermally induced tensile fractures. The resultant values of the null hypothesis (t-critical and t-stats) suggests that the null hypothesis can be discarded because there was no observable difference between the measured and expected values for the cores tested. The observations and data emanating from this study might be useful in designing low-level radioactive waste landfills, nuclear waste repositories, and deep underground excavations where the increased temperature could alter the mechanical behavior of the parent rock mass.  相似文献   
103.
The capability of accurately predicting mineralogical brittleness index(BI)from basic suites of well logs is desir-able as it provides a useful indicator of the fracability of tight formations.Measuring mineralogical components in rocks is expensive and time consuming.However,the basic well log curves are not well correlated with BI so correlation-based,machine-learning methods are not able to derive highly accurate BI predictions using such data.A correlation-free,optimized data-matching algorithm is configured to predict BI on a supervised basis from well log and core data available from two published wells in the Lower Barnett Shale Formation(Texas).This transparent open box(TOB)algorithm matches data records by calculating the sum of squared errors be-tween their variables and selecting the best matches as those with the minimum squared errors.It then applies optimizers to adjust weights applied to individual variable errors to minimize the root mean square error(RMSE)between calculated and predicted(BI).The prediction accuracy achieved by TOB using just five well logs(Gr,pb,Ns,Rs,Dt)to predict BI is dependent on the density of data records sampled.At a sampling density of about one sample per 0.5 ft BI is predicted with RMSE~0.056 and R2~0.790.At a sampling density of about one sample per 0.1 ft BI is predicted with RMSE~0.008 and R2~0.995.Adding a stratigraphic height index as an additional(sixth)input variable method improves BI prediction accuracy to RMSE~0.003 and R2~0.999 for the two wells with only 1 record in 10,000 yielding a BI prediction error of>±0.1.The model has the potential to be applied in an unsupervised basis to predict BI from basic well log data in surrounding wells lacking mineralogical measure-ments but with similar lithofacies and burial histories.The method could also be extended to predict elastic rock properties in and seismic attributes from wells and seismic data to improve the precision of brittleness index and fracability mapping spatially.  相似文献   
104.
This paper presents the first glacial chronology for the Lahul Himalaya, Northern India. The oldest glaciation, the Chandra Glacial Stage, is represented by glacially eroded benches at altitudes greater than 4300 m above sea-level. This glaciation was probably of a broad valley type. The second glaciation, the Batal Glacial Stage, is represented by highly weathered and dissected lateral moraines, which are present along the Chandra valley and some of its tributaries. This was an extensive valley glaciation. The third major glaciation, the Kulti Glacial Stage, is represented by well-preserved moraines in the main tributary valleys of the Chandra valley. This represents a less extensive valley glaciation. Two minor glacial advances, the Sonapani I and II, are represented by small sharp-crested moraines, which are within a few hundred metres or few kilometres of the present-day glaciers. The change in style and extent of glaciation is attributed to an increase in aridity throughout the Quaternary, due either to global climatic change or uplift of the Pir Panjal mountains to the south of Lahul, which restricted the northward penetration of the south Asian summer monsoon. © 1996 John Wiley & Sons, Ltd.  相似文献   
105.
Natural Resources Research - A Bakken formation learning network is established based upon type well-log data (seven petrophysical variables) and a discrete stratigraphic index (Str) comprising...  相似文献   
106.
This article describes two spatially explicit models created to allow experimentation with different societal responses to the COVID‐19 pandemic. We outline the work to date on modeling spatially explicit infective diseases and show that there are gaps that remain important to fill. We demonstrate how geographical regions, rather than a single, national approach, are likely to lead to better outcomes for the population. We provide a full account of how our models function, and how they can be used to explore many different aspects of contagion, including: experimenting with different lockdown measures, with connectivity between places, with the tracing of disease clusters, and the use of improved contact tracing and isolation. We provide comprehensive results showing the use of these models in given scenarios, and conclude that explicitly regionalized models for mitigation provide significant advantages over a “one‐size‐fits‐all” approach. We have made our models, and their data, publicly available for others to use in their own locales, with the hope of providing the tools needed for geographers to have a voice during this difficult time.  相似文献   
107.
108.
Strain style, magnitude and distribution within mass‐transport complexes (MTCs) are important for understanding the process evolution of submarine mass flows and for estimating their runout distances. Structural restoration and quantification of strain in gravitationally driven passive margins have been shown to approximately balance between updip extensional and downdip contractional domains; such an exercise has not yet been attempted for MTCs. We here interpret and structurally restore a shallowly buried (c. 1,500 mbsf) and well‐imaged MTC, offshore Uruguay using a high‐resolution (12.5 m vertical and 15 × 12.5 m horizontal resolution) three‐dimensional seismic‐reflection survey. This allows us to characterise and quantify vertical and lateral strain distribution within the deposit. Detailed seismic mapping and attribute analysis shows that the MTC is characterised by a complicated array of kinematic indicators, which vary spatially in style and concentration. Seismic‐attribute extractions reveal several previously undocumented fabrics preserved in the MTC, including internal shearing in the form of sub‐orthogonal shear zones, and fold‐thrust systems within the basal shear zone beneath rafted‐blocks. These features suggest multiple transport directions and phases of flow during emplacement. The MTC is characterised by a broadly tripartite strain distribution, with extensional (e.g. normal faults), translational and contractional (e.g. folds and thrusts) domains, along with a radial frontally emergent zone. We also show how strain is preferentially concentrated around intra‐MTC rafted‐blocks due to their kinematic interactions with the underlying basal shear zone. Overall, and even when volume loss within the frontally emergent zone is included, a strain difference between extension (1.6–1.9 km) and contraction (6.7–7.3 km) is calculated. We attribute this to a combination of distributed, sub‐seismic, ‘cryptic’ strain, likely related to de‐watering, grain‐scale deformation and related changes in bulk sediment volume. This work has implications for assessing MTCs strain distribution and provides a practical approach for evaluating structural interpretations within such deposits.  相似文献   
109.
Since the discovery of shatter cones (SCs) near the village of Agoudal (Morocco, Central High Atlas Mountains) in 2013, the absence of one or several associated circular structures led to speculation about the age of the impact event, the number, and the size of the impact crater or craters. Additional constraints on the crater size, age, and erosion rates are obtained here from geological, structural, and geophysical mapping and from cosmogenic nuclide data. Our geological maps of the Agoudal impact site at the scales of 1:30,000 (6 km2) and 1:15,000 (2.25 km2) include all known occurrences of SCs in target rocks, breccias, and vertical to overturned strata. Considering that strata surrounding the impact site are subhorizontal, we argue that disturbed strata are related to the impact event. Three types of breccias have been observed. Two of them (br1‐2 and br2) could be produced by erosion–sedimentation–consolidation processes, with no evidence for impact breccias, while breccia (br1) might be impact related. The most probable center of the structure is estimated at 31°59′13.73?N, 5°30′55.14?W using the concentric deviation method applied to the orientation of strata over the disturbed area. Despite the absence of a morphological expression, the ground magnetic and electromagnetic surveys reveal anomalies spatially associated with disturbed strata and SC occurrences. The geophysical data, the structural observations, and the area of occurrence of SCs in target rocks are all consistent with an original size of 1.4–4.2 km in diameter. Cosmogenic nuclide data (36Cl) constrain the local erosion rates between 220 ± 22 m Ma?1 and 430 ± 43 m Ma?1. These erosion rates may remove the topographic expression of such a crater and its ejecta in a time period of about 0.3–1.9 Ma. This age is older than the Agoudal iron meteorite age (105 ± 40 kyr). This new age constraint excludes the possibility of a genetic relationship between the Agoudal iron meteorite fall and the formation of the Agoudal impact site. A chronolgy chart including the Atlas orogeny, the alternation of sedimentation and erosion periods, and the meteoritic impacts is presented based on all obtained and combined data.  相似文献   
110.
Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) U–Pb geochronology of shocked zircon grains in a vesicular‐fluidal impact melt rock from the ≥54 km Charlevoix impact structure, Québec, Canada, suggests an Ordovician to Silurian age of 450 ± 20 Ma for the impact. This age is anchored by concordant U–Pb results of ~450 Ma for a U‐rich, cryptocrystalline zircon grain in the melt rock, interpreted as a recrystallized metamict zircon crystal; the U–Th–Pb system of the metamict grain was seemingly chronometrically reset by the Charlevoix impact, but withstood later tectonometamorphic events. The new zircon age for Charlevoix is in agreement with a stratigraphically constrained Late Ordovician maximum age of ~453 Ma and corroborates earlier suggestions that the impact occurred most likely in the Ordovician, and not ~100 Myr later, as indicated by previous K/Ar and 40Ar/39Ar geochronologic results. The latter may reflect postimpact thermal overprint of impactites during the Salinian (Late Silurian to Early Devonian) and/or Acadian (Late Devonian) orogenies. U–Pb geochronology of zircon crystals in anorthosite exposed in the central uplift of the impact structure yielded a Grenvillian crystallization age of 1062 ± 11 Ma. The preferred Ordovician age for the Charlevoix impact structure, which is partially overthrusted by the Appalachian front, suggests the impact occurred during a phase of Taconian tectonism and an episode of enhanced asteroid bombardment of the Earth. Our results, moreover, demonstrate that (recrystallized) metamict zircon grains may be of particular interest in impact geochronology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号