首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   13篇
  国内免费   4篇
测绘学   10篇
大气科学   11篇
地球物理   45篇
地质学   85篇
海洋学   22篇
天文学   41篇
自然地理   17篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   7篇
  2018年   4篇
  2017年   10篇
  2016年   5篇
  2015年   4篇
  2014年   6篇
  2013年   12篇
  2012年   7篇
  2011年   23篇
  2010年   17篇
  2009年   11篇
  2008年   20篇
  2007年   10篇
  2006年   16篇
  2005年   9篇
  2004年   9篇
  2003年   5篇
  2002年   8篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   3篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1974年   1篇
  1971年   1篇
  1950年   1篇
排序方式: 共有231条查询结果,搜索用时 843 毫秒
211.
212.
European vegetation during representative “warm” and “cold” intervals of stage-3 was inferred from pollen analytical data. The inferred vegetation differs in character and spatial pattern from that of both fully glacial and fully interglacial conditions and exhibits contrasts between warm and cold intervals, consistent with other evidence for stage-3 palaeoenvironmental fluctuations. European vegetation thus appears to have been an integral component of millennial environmental fluctuations during stage-3; vegetation responded to this scale of environmental change and through feedback mechanisms may have had effects upon the environment. The pollen-inferred vegetation was compared with vegetation simulated using the BIOME 3.5 vegetation model for climatic conditions simulated using a regional climate model (RegCM2) nested within a coupled global climate and vegetation model (GENESIS-BIOME). Despite some discrepancies in detail, both approaches capture the principal features of the present vegetation of Europe. The simulated vegetation for stage-3 differs markedly from that inferred from pollen analytical data, implying substantial discrepancy between the simulated climate and that actually prevailing. Sensitivity analyses indicate that the simulated climate is too warm and probably has too short a winter season. These discrepancies may reflect incorrect specification of sea surface temperature or sea-ice conditions and may be exacerbated by vegetation-climate feedback in the coupled global model.  相似文献   
213.
We examine the possibility that a substantial fraction of the total energy density in a spatially flat Universe is composed of a time-dependent and spatially inhomogeneous component whose equation-of-state differs from that of baryons, neutrinos, dark matter, or radiation. In this lecture, we report on our investigations of the case in which the additional energy component, dubbed "quintessence", is due to a dynamical scalar field evolving in a potential. We have computed the effects on the background cosmological evolution, the cosmic microwave background (CMB) and mass power spectrum, finding a broad range of cosmologically viable models. We stress three important features of the quintessence or Q-component: the time evolution of the equation-of-state; the length-scale dependence of the speed of propagation of the fluctuations in the Q-component; and, the contribution of quintessence fluctuations to the CMB anisotropy spectrum. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
214.
The period–luminosity (PL) relation zero-point determination from Hipparcos trigonometric parallaxes of Cepheids is contentious. It is shown that the method used by Feast &38; Catchpole is equivalent to a standard minimization of sum of squares, and that it is free of Lutz–Kelker bias. The same technique is applied to RR Lyrae and field HB star data, the PL relation being replaced by a luminosity–metallicity relation.  相似文献   
215.
At Dromedary Massif, Southern Victoria Land, Antarctica, a suite of coarse-grained granite dykes cross-cuts a gabbro pluton which has been partially metamorphosed at amphibolite facies. During regional deformation, strain has been inhomogeneously distributed through the gabbro pluton and has been concentrated in granite dykes. In zones of relatively high strain, the granite dykes have developed a mylonitic fabric. A high strain gradient between granitic mylonite and metagabbroic host rock has induced isochemical mylonitization of the margin of the host. This grain size reduction allowed chemical diffusion between granitic and metagabbroic mylonites, resulting in a marginal zone of biotite-rich mylonite with intermediate composition. Biotite-rich mylonite decoupled from metagabbroic mylonite and flowed with granitic mylonite. Continued folding and transposition of granitic mylonite and biotite-rich mylonite has produced compositionally banded mylonite zones through thorough and irreversible mixing of the two lithologies.  相似文献   
216.
Depth profiles of solute chemistry and sulfate isotopic compositions are presented for groundwater and pore water in a sequence of Quaternary glacial outwash sediments. Sand units show evidence for hydraulic connection to the surface and thus modern sources of solutes. Finer‐grained sediments show a general pattern of increasing solute concentrations with depth, with sulfate derived from ancient rainwater and pyrite oxidation in the soil/drift. In these sediments sulfate has undergone bacterial sulfate reduction (BSR) to produce biogenic sulfide. In clay sediments, with d10 ≤ 1·6 µm, high concentrations of sulfate and acetate now co‐exist, implying that BSR is inhibited. The correlation with smaller sediment grain size indicates that this is due to pore size exclusion of the sulfate reducing bacteria. Mechanical restriction of microbial function thus provides a fundamental limitation on microbial respiration in buried clay‐rich sediments, which acts as a control on the chemical evolution of their pore waters. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
217.
Jie Xiao  Dave Waltham 《Sedimentology》2019,66(5):1700-1715
Different combinations of stratal controls could produce identical sequence architectures. Consequently, interpretations of the stratigraphic record, for example to infer palaeo‐climate and eustatic sea‐level history, suffer from non‐uniqueness. However, variations in the multiple controls can be encapsulated through discovery of all possible solutions to an interpretation. As this paper demonstrates, a single solution can be directly transformed into an alternative solution that leaves the expected geological outcomes unaltered, which can be regarded as the existence of symmetry in the interpretation. Repetitive application of the symmetry method can therefore allow additional solutions to be rapidly derived given an existing solution. The proposed method has been adapted to a stratigraphic forward model for interpreting the Baltimore Canyon (USA) stratigraphy. Modelling results have indicated the ranges of changes in relative sea‐level, sediment supply and subaerial erosion from Oligocene to Mid‐Miocene. Using these limits, it is possible to determine what appears to be true in the palaeo‐history, even when a solution is not unique.  相似文献   
218.
219.
220.
We present a careful analysis of the point-source detection limit of the AKARI All-Sky Survey in the WIDE-S 90-μm band near the North Ecliptic Pole (NEP). Timeline analysis is used to detect IRAS ( Infrared Astronomy Satellite ) sources and then a conversion factor is derived to transform the peak timeline signal to the interpolated 90-μm flux of a source. Combined with a robust noise measurement, the point-source flux detection limit at signal-to-noise ratio  (S/N) > 5  for a single detector row is  1.1 ± 0.1 Jy  which corresponds to a point-source detection limit of the survey of ∼0.4 Jy.
Wavelet transform offers a multiscale representation of the Time Series Data ( tsd ). We calculate the continuous wavelet transform of the tsd and then search for significant wavelet coefficients considered as potential source detections. To discriminate real sources from spurious or moving objects, only sources with confirmation are selected. In our multiscale analysis, IRAS sources selected above 4σ can be identified as the only real sources at the Point Source Scales. We also investigate the correlation between the non- IRAS sources detected in timeline analysis and cirrus emission using wavelet transform and contour plots of wavelet power spectrum. It is shown that the non- IRAS sources are most likely to be caused by excessive noise over a large range of spatial scales rather than real extended structures such as cirrus clouds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号