首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   9篇
  国内免费   4篇
测绘学   10篇
大气科学   11篇
地球物理   45篇
地质学   85篇
海洋学   22篇
天文学   41篇
自然地理   17篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   7篇
  2018年   4篇
  2017年   10篇
  2016年   5篇
  2015年   4篇
  2014年   6篇
  2013年   12篇
  2012年   7篇
  2011年   23篇
  2010年   17篇
  2009年   11篇
  2008年   20篇
  2007年   10篇
  2006年   16篇
  2005年   9篇
  2004年   9篇
  2003年   5篇
  2002年   8篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   3篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1974年   1篇
  1971年   1篇
  1950年   1篇
排序方式: 共有231条查询结果,搜索用时 11 毫秒
141.
Fracture propagation plays a key role for a number of applications of interest to the scientific community, from dynamic fracture processes like spallation and fragmentation in metals to failure of ceramics, airplane wings, etc. Simulations of material deformation and fracture propagation rely on accurate knowledge of material characteristics such as material strength and the amount of energy being dissipated during the fracture process. Within the combined finite-discrete element method (FDEM) framework material fracture behavior is typically described through a parametrized softening curve, which defines a stress-strain relationship unique to each material. We apply the Fourier amplitude sensitivity test to explore how each of these parameters influences the simulated damage processes and to determine the key input parameters that have the most impact on the model response. We present several sensitivity numerical experiments for the simulation of a split Hopkinson pressure bar (SHPB) test for weathered granite samples using different combinations of model parameters. We validate the obtained results against SHPB experimental data. The experiments show that the model is mostly sensitive to parameters related to tensile and shear strengths, even in the presence of other parameter perturbations. The results suggest that the specification of tensile and shear strengths at the interfaces dominate the stress-time history of the FDEM simulation of SHPB test.  相似文献   
142.
Simulation of frictional contact between soils and rigid or deformable structure in the framework of smoothed particle hydrodynamics (SPH) is presented in this study. Two algorithms are implemented into the SPH code to describe contact behavior, where the contact forces are calculated using the law of conservation of momentum based on ideal plastic collision or using the criteria of partial penetrating. In both algorithms, the problem of boundary deficiency inherited from SPH is properly handled so that the particles located at contact boundary can have precise acceleration, which is critical for contact detection. And the movement and rotation of the rigid structure are taken into account so that it is easy to simulate the process of pile driving or movement of a retaining wall in geotechnical engineering analysis. Furthermore, the capability of modeling deformability of a structure during frictional contact simulations broadens the fields of SPH application. In contrast to previous work dealing with contact in SPH, which usually use particle‐to‐particle contact or ignoring sliding between particles and solid structure, the method proposed here is more efficient and accurate, and it is suitable to simulate interaction between soft materials and rigid or deformable structures, which are very common in geotechnical engineering. A number of numerical tests are carried out to verify the accuracy and stability of the proposed algorithms, and their results are compared with analytical solutions or results from finite element method analysis. Good agreement obtained from these comparisons suggests that the proposed algorithms are robust and can be applied to extend the capability of SPH in solving geotechnical problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
143.
Typhoon-triggered landslides deliver huge amounts of sediment to the upstream channel of the Shihmen Reservoir in northern Taiwan. Observation data regarding landsliding, sediment discharge and water turbidity following five major typhoon events from 1985 to 2006 demonstrated that each time water turbidity in the reservoir area rapidly increased up to ten-fold from the river catchment drainage, and the weight of landslide debris exceeded total sediment discharge five-fold. The fact that huge amounts of landslide debris still remained on upstream slopes and water turbidity suddenly increased in the reservoir area but not in upstream channel implied that the increasing water turbidity in the Shihmen Reservoir was indirectly related to the large landslides occurring in the upstream catchment. The main cause of high turbidity in the reservoir area was that, during a typhoon event, high water discharge flowing into the reservoir scoured the fine fraction sediment at the bottom of the reservoir and formed hyperpycanl flow with high turbidity, which then ascended to contaminate the reservoir surface water.  相似文献   
144.
This paper describes two projects requiring production of national floodplain maps for England and Wales – some 80,000 km of river. The novel solutions developed have brought together a national Digital Elevation Model (DEM), automatically-generated peak flow estimates at intervals along the watercourses and two alternative methods of calculating the outlines: normal depth calculation; and a purpose-built 2-dimensional raster-based floodplain model, JFLOW. The DEM was derived using Interferometric Synthetic Aperture Radar (IFSAR) techniques and has a vertical precision of ±0.5 m–1.0 m (RMSE) and a 5 m horizontal resolution. The flow estimates were derived by automating Flood Estimation Handbook (FEH) techniques. The normal depth calculations are applied at a number of discrete cross-sections with linear interpolation between to form a 3-dimensional water surface. This is overlain on the DEM to produce the flood outline. Careful manual checking is required at a number of stages. The JFLOW model is based on a discretised form of the 2-dimensional diffusive wave equation and directly simulates the flood outline in a series of overlapping short (1 km) reaches. Flood outlines from the overlapping reaches are merged to produce the overall flood envelope. The model has been written to work as a screen-saver, allowing distributed processing across all computers in an office and manual intervention is minimal. In simple valley situations both methods give similar results, but show differences in more complex areas. Each has advantages and disadvantages, but both have been shown to be a practicable solution to allow production of 160,000 km of flood outline in 12 months.  相似文献   
145.
We report the results of the South Indian Strain Measuring Experiment (SISME) designed to determine whether strain related to microseismicity in the past century may have deformed the networks of the 19th century Great Trigonometrical Survey of India (GTS). More than a dozen GTS points were measured between Mangalore, Madras, and Kanyakumari in southernmost India using GPS geodesy to determine regional deformation. Detailed measurements were made near two of the original baselines of the survey to determine the reliability of dilatational strain data for the network. The regional measurements revealed negligible regional dilatational (+ 11.2 + 10 microstrain) and shear strain changes (0.66± 1.2μradians) in the southernmost 530 km of India. In addition to these measurements, we determined the rate of northward and eastward motion of a point in Bangalore (1991–1994) in the ITRF92 reference frame to be 39 ± 3.5 mm/year, and 51 ± 11 mm/year respectively. This is consistent with NUVEL-1A plate motion estimate for India. Simultaneous measurements to a point near Kathmandu reveal that the Indian plate and the Southern Himalaya are moving approximately in unison, placing an upper limit on the rate of creep processes beneath the lesser Himalaya of ≈6 mm/year, and suggesting relatively rigid behavior of the Indian plate north of Bangalore. The stability of the Indian plate is confirmed by the absence of significant changes in the lengths of the two baselines at Bangalore and Cape Comorin, which, within the limits of experimental error have not changed since 1869. The measurements place an upper limit for recent deformation in the southern peninsula, and hence a lower limit for the renewal time for intraplate earthquakes in the region of approximately 10,000 years, assuming shear failure strain of approximately 100 μradians. This, in turn, implies that recurrence intervals for Peninsular Earthquakes far exceed the length of the written historic record, suggesting that the characterisation of seismic recurrence intervals from historical studies is likely to be fruitless. In contrast, the SISME experiment demonstrates that the noise level of geodetic studies based on 19th century GTS data is less than 0.02 μstrain/year, providing considerable scope for delineating regions of anomalously high seismogenic strain, by GPS measurements at all available trig points of the 19th century GTS survey.  相似文献   
146.
To understand the evolution of a disaster, we propose a Framework for Assessing Crisis in a System Environment (FACSE). FACSE is set in a multi-system environment, containing the human system as well as the various natural and technological systems that interact with people. We take a lifecycle perspective, via which we quantify rhythms of life exhibited in multiple systems, across different scales, at different times. The lifecycle perspective also implies a relative approach in that rhythms of life during time t can be compared against those during t-1. We illustrate how rhythms of life in the human system can be measured at different scales. We propose a new concept??the degree of disaster, which is a composite score that encompasses the various measurements of rhythms of life from multiple systems, across different scales. We conclude the paper by discussing the potential offered by FACSE in disaster research as well as the limitations.  相似文献   
147.
Efforts to map the lithology and geometry of sand and gravel channel‐belts and valley‐fills are limited by an inability to easily obtain information about the shallow subsurface. Until recently, boreholes were the only method available to obtain this information; however, borehole programmes are costly, time consuming and always leave in doubt the stratigraphic connection between and beyond the boreholes. Although standard shallow geophysical techniques such as ground‐penetrating radar (GPR) and shallow seismic can rapidly obtain subsurface data with high horizontal resolution, they only function well under select conditions. Electrical resistivity ground imaging (ERGI) is a recently developed shallow geophysical technique that rapidly produces high‐resolution profiles of the shallow subsurface under most field conditions. ERGI uses measurements of the ground's resistance to an electrical current to develop a two‐dimensional model of the shallow subsurface (<200 m) called an ERGI profile. ERGI measurements work equally well in resistive sediments (‘clean’ sand and gravel) and in conductive sediments (silt and clay). This paper tests the effectiveness of ERGI in mapping the lithology and geometry of buried fluvial deposits. ERGI surveys are presented from two channel‐fills and two valley‐fills. ERGI profiles are compared with lithostratigraphic profiles from borehole logs, sediment cores, wireline logs or GPR. Depth, width and lithology of sand and gravel channel‐fills and adjacent sediments can be accurately detected and delineated from the ERGI profiles, even when buried beneath 1–20 m of silt/clay.  相似文献   
148.
It has long been recognized that the Arab‐D reservoir in Ghawar field has been significantly dolomitized and that the distribution of dolomites is highly heterogeneous across this reservoir. Previous studies indicated that dolomite occurs with either a stratigraphic or non‐stratigraphic distribution; when mapped, dolomite tends to form several parallel linear trends across the field. Although stratigraphic dolomite was suggested to be formed early from highly evaporated pore fluids sourced from overlying evaporite deposits, non‐stratigraphic dolomite was thought to be generated primarily from hydrothermal fluids sourced from below. This study focuses primarily on these non‐stratigraphic dolomites, and proposes that: (i) these dolomites initially formed via seepage reflux, but were reinforced by late stage hydrothermal dolomitization; and (ii) reflux is also responsible for the formation of parallel, linear trends of dolomite. The reflux model hypothesizes that an evaporative lagoon (which is the source of dolomitizing fluids) formed during the falling stage systems tract of a depositional sequence, and that with continuing sea‐level fall this lagoon migrated progressively towards deeper parts of an intrashelf basin adjacent to the Ghawar field, leaving behind lines of dolomite bodies along a series of temporary coastlines. Two‐dimensional reactive transport models have been built to test this hypothesis, and have resulted in a predicted pattern of dolomite bodies that agrees with both the observed vertical distribution of non‐stratigraphic dolomite, as well as the mapped lateral distribution of the dolomite trends. In addition, the major ion compositions of Late Jurassic seawater are calculated based on fluid inclusion data in the literature. Using Jurassic seawater in current models leads to the absence of anhydrite cements and less potential of over‐dolomitization than using modern seawater.  相似文献   
149.
A field experiment was conducted on wheat crop during rabi seasons of 1995–96, 1996–97 and 1997–98 to study the spectral response of wheat crop (between 490 to 1080 nm) under water and nutrient stress condition. An indigenously developed ground truth radiometer having narrow band in visible and near infrared region (490 – 1080 nm) was used. Vegetation indices derived using different band combinations and related to crop growth parameters. The near infrared spectral region of 710 – 1025 nm was found most important for monitoring stress condition. Relationship has been developed between crop growth parameters and vegetation indices. Leaf Area Index (LAI) and chlorophyll could be predicted by knowing different reflectance ratios at milking stage of crop with R2 value of 0.78 and 0.89, respectively. Dry biomass (DBM), Plant Water Content (PWC) and grain yield are also significantly related with reflectance ratios at flowering stage of crop with R2 value of 0.90, 0.98 and 0.74, respectively.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号