首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2703篇
  免费   157篇
  国内免费   33篇
测绘学   112篇
大气科学   229篇
地球物理   612篇
地质学   996篇
海洋学   229篇
天文学   440篇
综合类   14篇
自然地理   261篇
  2023年   16篇
  2022年   23篇
  2021年   66篇
  2020年   89篇
  2019年   79篇
  2018年   90篇
  2017年   108篇
  2016年   131篇
  2015年   95篇
  2014年   118篇
  2013年   167篇
  2012年   128篇
  2011年   175篇
  2010年   149篇
  2009年   157篇
  2008年   140篇
  2007年   104篇
  2006年   99篇
  2005年   102篇
  2004年   84篇
  2003年   84篇
  2002年   67篇
  2001年   52篇
  2000年   47篇
  1999年   33篇
  1998年   28篇
  1997年   32篇
  1996年   31篇
  1995年   29篇
  1994年   14篇
  1993年   16篇
  1992年   22篇
  1991年   18篇
  1990年   22篇
  1989年   12篇
  1988年   15篇
  1987年   19篇
  1986年   8篇
  1985年   21篇
  1984年   26篇
  1983年   18篇
  1982年   19篇
  1981年   22篇
  1980年   14篇
  1979年   8篇
  1978年   12篇
  1977年   13篇
  1976年   10篇
  1975年   14篇
  1974年   16篇
排序方式: 共有2893条查询结果,搜索用时 15 毫秒
521.
<正>The pressure and impact on large rivers have increased greatly in recent years,as a consequence of their exploitation to meet various human needs.Large rivers are particularly exposed to problems of multiple uses,often with conflicting aims.At the global scale river systems are increasingly altered by dams,leading to interruption of continuity and a disrupted sediment regime,which results in far-reaching problems.These challenges point also to the need for more integrated management approaches and consideration of catchment-river interactions emphasizing land use management and effects of these uses.At the global scale,there is currently no overview assessment of the current status of the world's large rivers,the conflicting demands on such rivers,and likely future anthropogenic impacts,as well as the potential for restoration,improvements in integrated management and the associated problems caused by their multiple uses.The special issue in the International Journal of Sediment Research on"Sediment loads and processes in large rivers"aims to provide a global forum for a wide-ranging discussion of key issues related to research on large rivers and to their effective and sustainable management,involving both scientists and decision makers.The sequence of papers in the special issue highlights the current situation in different river systems with regard to morphodynamic reactions of  相似文献   
522.
Temporal shifts in phenology or vegetation period of plants are seen as indicators of global warming with potentially severe impacts on ecosystem functioning. In spite of increasing knowledge on drivers, it is of utmost importance to disentangle the relationship between air temperatures, phenological events, potential temporal lags (phase shifts) and time scale for certain plant species. Assessing the phase shifts as well as the scale-dependent relationship between temperature and vegetation phenology requires the development of a nonlinear temporal model. Therefore, we use wavelet analysis and present a framework for identifying scale-dependent cross-phase coupling of bivariate time series. It allows the calculation of (a) scale-dependent decompositions of time series, (b) phase shifts of seasonal components in relation to the annual cycle, and (c) inter-annual phase differences between seasonal phases of different time series. The model is applied to air temperature data and remote sensing phenology data of a beech forest in Germany. Our study reveals that certain seasonal changes in amplitude and phase with respect to the normal annual rhythm of temperature and beech phenology are coupled time-delayed components, which are characterized by a time shift of about one year.  相似文献   
523.
The complexity of most geological and geophysical problems prompts sometimes the use of non linear mathematical methods to handle them. An adaptive neuro fuzzy inference system (ANFIS) that combines fuzzy logic with neural networks, is applied here to study a paleoclimate section from the Quaternary sedimentary fill of the Lake Mucubají (western Venezuela). The purpose of this work is to find a set of numerical relationships that could predict the possible connections between oxygen isotope (δ18O) values from two different locations in the northern hemisphere (Ammersee in southern Germany and an ice core from the Greenland Ice Core Project — GRIP) and rock-magnetic parameters measured in Mucubají samples (i.e. mass-specific magnetic susceptibility — χ, magnetic remanence S-ratio, mass-specific saturation isothermal remanent magnetization — SIRM and anhysteretic remanent magnetization — ARM). The best inferences in terms of coefficient of determionation R2 and the Root Mean-Square Error (RMSE) are obtained using those magnetic data as input that include information about magnetite grain size distributions, e.g., SIRM and ARM in FIS structures [1χ, 4ARM] and [4ARM, 1SIRM]. A comparison between Ammersee and GRIP actual data, as well as their corresponding inferences for the FIS structure [4ARM, 1SIRM], reveals a reasonable good inference of global trends for both records, overlooking the regional and/or local paleoclimate forcings that might have affected Ammersee. A better correlation between global isotope paleoclimate records and magnetic proxies, is perhaps prevented by the role played by local and regional paleoclimate and tectonism in Mucubají. We also argue that the ratio of ARM over SIRM appears to be related in a complex way to the onset and to the end of the Younger Dryas. Our novel approach to the assessment of a specific paleoclimate case study shows the potential of the ANFIS technique in solving problems where traditional univariate and multivariate linear regression methods could prove inadequate.  相似文献   
524.
525.
Accurate estimations of spatio-temporal fields at unsampled locations are important in a number of applications. Often, spatio-temporal fields are advected, which means the change in field values over time at a particular point in space stems to a large extent from motion of a more or less constant spatial field. For such dynamic fields, interpolation methods including information on the motion behaviour of the field are promising extensions of solely spatial (snapshot) and symmetric spatio-temporal methods. In this paper, the performance of different deterministic and geostatistical interpolation methods is compared for precipitation estimation from 1-minute time series of spatially distributed rain gauges. The focus is on spatio-temporal methods that include information on the motion behaviour of the rainfield, estimated from weather radar using optical flow. The different interpolation methods are introduced and evaluated using rain gauge measurements of a 15-day period and cross-validation. The results show that including information on the motion behaviour significantly improves interpolation quality in terms of RMSE.  相似文献   
526.
Abstract

Agricultural watersheds in the Czech Republic are one of the primary sources of non-point-source phosphorus (P) loads in receiving waters. Since such non-point sources are generally located in headwater catchments, streamflow and P concentration data are sparse. We show how very short daily streamflow and P concentration records can be combined with nearby longer existing daily streamflow records to result in reliable estimates of daily and annual P concentrations and loads. Maintenance of variance streamflow record extension methods (MOVE) can be employed to extend short streamflow records. Constituent load regressions are used to predict daily P constituent loads from streamflow and other time varying characteristics. Annual P loads are then estimated for individual watersheds. Resulting annual P load estimates ranged from 0.21 to 95.4 kg year-1 with a mean value of 11.77 kg year-1. Similarly annual P yield estimates ranged from 0.01 to 0.3 kg ha-1 year-1 with an average yield of 0.07 kg ha-1 year-1. We document how short records of daily streamflow and P concentrations can be combined with a national network of daily streamflow records in the Czech Republic to arrive at meaningful and reliable estimates of annual P loads for small agricultural watersheds.

Citation Beránková, T., Vogel, R. M., Fiala, D. & Rosendorf, P. (2010) Estimation of phosphorus loads with sparse data for agricultural watersheds in the Czech Republic. Hydrol. Sci. J. 55(8), 1417–1426.  相似文献   
527.

The dynamics of solitary Rossby waves (SRWs) embedded in a meridionally sheared, zonally varying background flow are examined using a non-divergent barotropic model centered on a midlatitude g -plane. The zonally varying background flow, which is produced by an external potential vorticity (PV) forcing, yields a modified Korteweg-de Vries (K-dV) equation that governs the spatial-temporal evolution of a disturbance field that contains both Rossby wave packets and SRWs. The modified K-dV equation differs from the classical equation in that the zonally varying background flow, which varies on the same scale as the disturbance field, directly affects the disturbance linear translation speed and linear growth characteristics. In the limit of a locally parallel background flow, equations governing the amplitude and propagation characteristics of SRWs are derived analytically. These equations show, for example, that a sufficiently large (small) translation speed and/or a sufficiently weak (strong) background zonal shear favor transmission (reflection) of the SRW through (from) the jet. Conservation equations are derived showing that time changes in the domain averaged amplitude ("mass") or squared amplitude ("momentum") are due to zonal variation in both the linear, long-wave phase speed and linear growth; dispersion and nonlinearity do not affect the "mass" or "momentum". Provided (1) the background PV forcing is sufficiently small, or (2) the background PV forcing is meridionally symmetric and the disturbance is a SRW, the dynamics of the disturbance field is Hamiltonian and mass and energy are thus conserved. Numerical solutions of the K-dV equation show that the zonally varying background flow yields three general classes of behavior: reflection, transmission, or trapping. Within each class there exists SRWs and Rossby wave packets. SRWs that become trapped within the zonally localized jet region may exhibit the following behaviors: (1) an oscillatory decay to a steady state at the jet center, (2) the creation of additional SRWs within the jet region, or (3) a steady-state wherein the solution has a smoothed step-like structure located downstream along the jet axis.  相似文献   
528.
The threshold concept has been applied with considerable success to the understanding of geomorphic systems. Both intrinsic and extrinsic thresholds can be recognized in soil systems, but intrinsic thresholds have previously been largely ignored. Examples of intrinsic thresholds in soils include minimum levels of sesquioxides for immobilization of organic matter in spodic horizons, leaching of carbonates before clay movement can take place, and certain minimum clay mineral ratios before a pedogenic regime dominated by pedoturbation can occur. Recognition of intrinsic thresholds explains soil instability in the absence of environmental change.  相似文献   
529.
A whole-basin, mass-balance approach to paleolimnology   总被引:1,自引:0,他引:1  
Lake sediments record the flux of materials (nutrients, pollutants, particulates) through a lake system both qualitatively, as changes in the composition of geochemical and biological tracers, as well as quantitatively, through changes in their rate of burial. Burial rates provide a direct link to contemporary (neo-) limnological studies as well as management efforts aimed at load reductions, but are difficult to reconstruct accurately from single cores owing to the spatial and temporal variability of sediment deposition in most lakes. The accurate determination of whole-lake burial rates from analysis of multiple cores, though requiring more effort per lake, can help resolve such problems and improve our understanding of sediment heterogeneity at multiple scales. Partial solutions to these problems also include focusing corrections based on 210Pb flux, co-evaluation of concentration profiles, trend analysis using multiple lakes, and trend replication based on a small number of cores from the same lake. Recent multi-core studies demonstrate that no single core site faithfully records the whole-lake time-resolved input of materials, but that as few as five well-placed cores can provide a reliable record of whole-lake sediment flux for morphometrically simple basins. Lake-wide sediment fluxes can be coupled with reconstructed outflow losses to calculate historical changes in watershed and atmospheric loading of nutrients, metals, and other constituents. The ability of paleolimnology to accurately assess the sedimentary flux and extend the period of reference into the distant past represents an important contribution to the understanding of biogeochemical processes and their response to human and natural disturbance.  相似文献   
530.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号