首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
大气科学   1篇
地球物理   10篇
地质学   7篇
海洋学   3篇
天文学   2篇
自然地理   8篇
  2016年   2篇
  2014年   2篇
  2013年   2篇
  2010年   2篇
  2008年   2篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1992年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1962年   1篇
排序方式: 共有31条查询结果,搜索用时 125 毫秒
11.
We investigate the evolution of the salt field in a bar-built estuary after the tidal inlet is closed by sediment, isolating the estuary from the ocean. We show that seawater trapped by inlet closure in the Russian River Estuary, CA, undergoes a two-stage landward intrusion process that leads to widespread salt stratification throughout the estuary. This salinity intrusion extends to distances of several kilometers from the beach—into the “inner estuary” that is separated from the “outer estuary” by shallow sills and typically devoid of saline waters during tidal conditions when the mouth is open. We describe landward movement of saline waters during six closure events in 2009 and 2010, based on repeat boat-based conductivity-temperature-depth (CTD) surveys and bottom-mounted acoustic Doppler current profilers (ADCPs). While sills block the initial landward motion of dense saline waters due to gravitational adjustment (first stage of intrusion), these same sills facilitate a wind-induced, one-direction valve mechanism through which saline waters are pumped into the inner estuary. Saline waters that crest the shallow sill can drain into deeper pools in the inner estuary as a pulsed gravity current (second stage of intrusion). We use empirical orthogonal function (EOF) analysis to identify an internal seiche in the outer estuary that results in uplift of pycnocline waters during the night at the boundary to the inner estuary. EOF analysis of inner estuary currents and a horizontal Richardson number are used to suggest that nocturnal gravity current events in the inner estuary (beyond the blocking sill) occur as pulses initiated by the internal seiche in the outer estuary.  相似文献   
12.
Large channels on the Martian surface have been variously attributed to erosional, volcanic, and tectonic processes. Morphometric information shows that large braided Martian channels and islands between those channels are similar in their dimensions to channels and islands of large braided fluvial features on Earth. The information also suggests that braided fractures in solid materials are fundamentally different in morphometry from braided channels of Earth and Mars. Braided tension fractures have characteristically low braiding indices and are much narrower than their irregularly shaped “midchannel” islands. Terrestrial and Martian channels, in contrast, have high braiding indices, and they are wider than their streamlined midchannel islands. Braided volcanic features are known from the earth and the moon, but the absence of volcanic constructs near the large braided channels on Mars indicates that volcanic origin is unlikely. The morphometric information suggests that braided Martian channels are probably of fluvial origin.  相似文献   
13.
Numerical dispersion, numerical oscillation, and peak clipping are common numerical difficulties in solving advection-dispersion equations. The development of numerical approaches that can handle these numerical difficulties with reasonable computational efforts is an ongoing challenge. In this paper, an interpolation-corrected modified method of characteristics (ICMMOC) is proposed for solving advection-dispersion equations. The ICMMOC is an improved version of the modified method of characteristics (MMOC). It uses a high-order (second-order or higher) interpolation scheme to reduce numerical dispersion and an interpolation-correction procedure to eliminate numerical oscillation. A simple peak capturing scheme to overcome the peak clipping problem is also developed in this study. Simulation results show that the ICMMOC is able to overcome the aforementioned numerical difficulties for a large range of grid Peclet numbers.  相似文献   
14.
We present ab initio calculations of the zero-temperature iron high- to low-spin crossover in (Mg1 ? xFex)SiO3 perovskite at pressures relevant to Earth's lower mantle. Equations of state are fit for a range of compositions and used to predict the Fe spin transition pressure and associated changes in volume and bulk modulus. We predict a dramatic decrease in transition pressure as Fe concentration increases. This trend is contrary to that seen in ferropericlase, and suggests the energetics for spin crossover is highly dependent on the structural environment of Fe. Both Local Density Approximation (LDA) and Generalized Gradient Approximation (GGA) exchange-correlation methods are used, and both methods reproduce the same compositional trends. However, GGA gives a significantly higher transition pressure than LDA. The spin transition is made easier by the decreasing spin-flip energy with pressure but is also driven by the change in volume from high to low spin. Volume trends show that high-spin Fe2+ is larger than Mg2+ even under pressure, but low-spin Fe2+ is smaller at ambient conditions and approximately the same size as Mg2+ under high pressure, indicating that low-spin Fe2+ is less compressible than high-spin Fe2+. We find large changes between high- and low-spin in the slope of volume with Fe concentration. Although these changes are small in absolute magnitude for small Fe content, they are still important when measured per Fe and could be relevant for calculating partitioning coefficients in the lower mantle.  相似文献   
15.
Quaternary sedimentation in the western Makgadikgadi basin of north central Botswana is evaluated on the basis of new evidence from satellite imagery and sedimentological analyses. Thematic Mapper imagery interpretation, combined with field evidence, has led to the identification of geomorphological features which are mainly composed of light grey calcareous sandstones (formerly calcretes) overlain by dark grey sands. The literature suggests that palaeolake Makgadikgadi I formed and developed intermittently after initial downwarping in the early–mid Pleistocene. The calcareous sandstones were formed when calcium carbonate precipitation took place in pre-existing Kalahari sands along the western shoreline of Makgadikgadi I. Field evidence, supported by X-ray diffraction and SEM analyses, indicates that CaCO3precipitated mainly in marshy conditions around plant roots and stems and in association with bacteria in embayments along the lakeshore. The sandstones thickened and became partially indurated as a result of increasing palaeolake levels. Deposition was terminated by renewed tectonism which uplifted the shoreline zone relative to the lake basin, leading to falling palaeolake levels. Post-uplift reworking led to case hardening and pedogenic calcrete formation in the upper sections of the calcareous sandstones. Sedimentary conditions altered during the late Pleistocene. Extensive distributaries from the proto-Okavango system incised the shoreline ridge contributing to the filling of Makgadikgadi II. Satellite data suggest that the proto-Okavango rivers formed a series of fan deltas at this time along the western Makgadikgadi basin. Widespread dispersal of fluvial grey sands took place as a result of basin tilting which led to anastomosing channels flowing southward possibly around 18,000 B.P. These results, although preliminary in nature, augment previous geomorphological analyses by adding some detail in terms of depositional environments and by providing a tentative age and origin for the ubiquitous grey sands.  相似文献   
16.
Bedding‐parallel tafoni are well developed over much of the surface of the Tunnel Spring Tuff (Oligocene) exposed in 300‐m‐high Crystal Peak, an inselberg. The Tunnel Spring Tuff is a crudely stratified, non‐welded rhyolite ash‐flow tuff with > 30 per cent porosity. Clasts of Palaeozoic dolomite, limestone and quartzite make up 10 per cent of the tuff. The tafoni are remarkable because of their size (up to 20 m wide but rarely wider than 4 m), shape of the openings (spherical, arch‐like or crescent‐shaped) and abundance (up to 50 per cent of an outcrop face). They are actively forming today. Calcite is abundant (10 to 40 per cent by weight) in tafoni as an efflorescence in spalling flakes of tuff on their roofs and walls. Halite and gypsum generally make up less than 0·01 per cent of the efflorescence. The absence of corroded quartz and feldspar grains in spall fragments indicates that chemical weathering is unimportant in development of the tafoni. Calcite, aragonite, halite and gypsum dust from modern salt pans less than 20 km from Crystal Peak are potential sources of salt in the tuff, but the prevailing winds are in the wrong direction for significant amounts of these evaporite minerals to reach the inselberg. Calcite is the only evaporite mineral present in the tafoni in more than trace amounts, and this mineral is readily available within the tuff itself as a result of rock weathering. We propose that meteoric water containing carbonic acid infiltrates the tuff, dissolves carbonate clasts, and migrates to the steep flanks (>20°) of the peak through abundant megapores and micropores. There it evaporates and precipitates calcite. Crystallization pressure spalls off grains and sheets as the physical manifestation of salt weathering. The quasi‐uniform spacing of tafoni suggests that a self‐organization process is active in the water flow. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
17.
The characteristics of a reflected spherical wave at a free surface are investigated by numerical methods; in particular, the polarization angles and amplitude coefficients of a reflected spherical wave are studied. The classical case of the reflection of a plane P wave from a free surface is revisited in order to establish our terminology, and the classical results are recast in a way which is more suited for the study undertaken. The polarization angle of a plane P wave, for a given angle of incidence, is shown to be 90° minus twice the angle of reflection of the reflected S wave. For a Poisson's ratio less than 1/3, there is a non-normal incident angle for which both amplification coefficients are 2 precisely; for this incident angle the direction of the particle motion at the free surface is also the direction of the incident wave. For a wave emanating from a spherical source, the polarization angle, for all angles of incidence, is always less than, or equal to, the polarization angle of a plane P wave. The vector amplification coefficient of a spherical wave, for all angles of incidence, is always greater than the vector amplification coefficient of a plane P wave. As expected, the results for a spherical wave approach the results for a plane P wave in the far field. Furthermore, there was a good agreement between the theoretical modelling and the numerical modelling using the dynamic finite element method (DFEM).  相似文献   
18.
Relaxation times (T1) and lineshapes were examined as a function of temperature through the - transition for 29Si in a single crystal of amethyst, and for 29Si and 17O in cristobalite powders. For single crystal quartz, the three 29Si peaks observed at room temperature, representing each of the three differently oriented SiO4 tetrahedra in the unit cell, coalesce with increasing temperature such that at the - transition only one peak is observed. 29Si T1's decrease with increasing temperature up to the transition, above which they remain constant. Although these results are not uniquely interpretable, hopping between the Dauphiné twin related configurations, 1 and 2, may be the fluctuations responsible for both effects. This exchange becomes observable up to 150° C below the transition, and persists above the transition, resulting in -quartz being a time and space average of 1 and 2. 29Si T1's for isotopically enriched powdered cristobalite show much the same behavior as observed for quartz. In addition, 17O T1's decrease slowly up to the - transition at which point there is an abrupt 1.5 order of magnitude drop. Fitting of static powder 17O spectra for cristobalite gives an asymmetry parameter () of 0.125 at room T, which decreases to <0.040 at=" the=" transition=" temperature.=" the=" electric=" field=" gradient=" (efg)=" and=" chemical=" shift=" anisotropy=" (csa),=" however,=" remain=" the=" same,=" suggesting=" that=" the=" decrease=" in="> is caused by a dynamical rotation of the tetrahedra below the transition. Thus, the mechanisms of the - phase transitions in quartz and cristobalite are similar: there appears to be some fluctuation of the tetrahedra between twin-related orientations below the transition temperature, and the -phase is characterized by a dynamical average of the twin domains on a unit cell scale.  相似文献   
19.
Community-scale estimates of building damage and economic loss are modeled for Seaside, Oregon, for Cascadia subduction zone events ranging from 8.7 to 9.3 MW with corresponding slip distances of 3–25 m considering only the effects of the tsunami. Numerical simulations are obtained from the National Oceanic and Atmospheric Administration’s method of splitting tsunami model which includes a source model, subsidence, and calculations of the propagation and inundation flow characteristics. The damage estimates are based on fragility curves from the literature which relate flow depth with probability of damage for two different structural materials of buildings. Calculations are performed at the parcel level for the inundation hazard without including damage caused by the earthquake itself. Calculations show that the severity of building damage in Seaside is sensitive to the magnitude of the event or degree of slip because the majority of the city is located on low-lying coastal land within the estimated inundation zone. For the events modeled, the percentage of building within the inundation zone ranges from 9 to 88 %, with average direct economic losses ranging from $2 million to $1.2 billion.  相似文献   
20.
Estuarine and sheltered coastal habitats that contain physical structure are potentially important nurseries for juvenile fish. Many of these structured habitats, however, are potentially vulnerable to stressors such as elevated turbidity. Quantifying the benefits that structured habitats provide to juvenile fish may therefore be an important step in the management process. We investigated the value of structured habitat for juvenile fishes in northeastern New Zealand, using artificial seagrass units (ASUs) with varying blade density. ASUs were predominantly settled by juvenile snapper (Pagrus auratus) and spotty (Notolabrus celidotus). The density of both snapper and spotty was greatest on ASUs with the highest blade density. For snapper, a gradient in abundance was present (with higher abundance closer to the harbour mouth), suggesting either a gradient in the supply of recruits or a potential recruitment shadow effect. The size distribution of juvenile snapper (12–70 mm fork length) was very similar on both sampling trips, despite the 2‐month interim period, suggesting an ontogenetic habitat shift dependent on size. The condition of juvenile snapper from ASUs with the highest blade density was also greater than the other ASU treatments. Overall, these results provide new empirical evidence that habitats with physical structure within shallow estuarine systems are important to early stage juvenile fishes such as snapper, and indicate that the location‐specific context of that habitat is also likely important.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号