The toxicity of intact sediments and sediment extracts, from both an uncontaminated site and a site contaminated by pulp-mill effluents, was tested in a five months study. The deposit-feeding amphipod Monoporeia affinis was exposed in soft-bottom flow-through water microcosms. To examine potential toxicity a set of reproduction endpoints was used including fecundity and different embryo aberrations such as malformed eggs. Among extracts, the aliphatic/monoaromatic and diaromatic fractions along with the total extract were shown to cause the highest toxicity measured as malformed eggs, while the polyaromatic fraction caused toxicity at background levels. A comparison between sediment extracts and pulp mill contaminated intact sediment, however, showed no toxicity of the intact sediment. Thus, the extraction procedure seems to increase bioavailability and subsequently toxicity as compared to the intact sediments in situ. In toxicity testing using fractionated extracts of sediments in a toxicity identification evaluation (TIE) procedures, caution should therefore be taken when assessing bioavailable contaminants in contaminated areas. This should be taken in account both in determining remediation priorities as well as in ecological risk assessments. 相似文献
Deposition and subsidence analysis, coupled with previous structural studies of the Sevier thrust belt, provide a means of reconstructing the detailed kinematic history of depositional response to episodic thrusting in the Cordilleran foreland basin of southern Wyoming, western interior USA. The Upper Cretaceous basin fill is divided into five megasequences bounded by unconformities. The Sevier thrust belt in northern Utah and southwestern Wyoming deformed in an eastward progression of episodic thrusting. Three major episodes of displacement on the Willard‐Meade, Crawford and ‘early’ Absaroka thrusts occurred from Aptian to early Campanian, and the thrust wedge gradually became supercritically tapered. The Frontier Formation conglomerate, Echo Canyon and Weber Canyon Conglomerates and Little Muddy Creek Conglomerate were deposited in response to these major thrusting events. Corresponding to these proximal conglomerates within the thrust belt, Megasequences 1, 2 and 3 were developed in the distal foreland of southern Wyoming. Two‐dimensional (2‐D) subsidence analyses show that the basin was divided into foredeep, forebulge and backbulge depozones. Foredeep subsidence in Megasequences 1, 2 and 3, resulting from Willard‐Meade, Crawford and ‘early’ Absaroka thrust loading, were confined to a narrow zone in the western part of the basin. Subsidence in the broad region east of the forebulge was dominantly controlled by sediment loading and inferred dynamic subsidence. Individual subsidence curves are characterized by three stages from rapid to slow. Controlled by relationships between accommodation and sediment supply, the basin was filled with retrogradational shales during periods of rapid subsidence, followed by progradational coarse clastic wedges during periods of slow subsidence. During middle Campanian time (ca. 78.5–73.4 Ma), the thrust wedge was stalled because of wedge‐top erosion and became subcritical, and the foredeep zone eroded and rebounded because of isostasy. The eroded sediments were transported far from the thrust belt, and constitute Megasequence 4 that was mostly composed of fluvial and coastal plain depositional systems. Subsidence rates were very slow, because of post‐thrusting rebound, and the resulting 2‐D subsidence was lenticular in an east–west direction. During late Campanian to early Maastrichtian time, widespread deposits of coarse sediment (the Hams Fork Conglomerate) aggraded the top of the thrust wedge after it stalled, prior to initiation of ‘late’ Absaroka thrusting. Meanwhile Megasequence 5 was deposited in the Wyoming foreland under the influence of both the intraforeland Wind River basement uplift and the Sevier thrust belt. 相似文献
A study of the East Frisian Islands has shown that the plan form of these islands can be explained by processes of inlet sediment bypassing. This island chain is located on a high wave energy, high tide range shoreline where the average deep-water significant wave height exceeds 1.0 m and the spring tidal range varies from 2.7 m at Juist to 2.9 m at Wangerooge. An abundant sediment supply and a strong eastward component of wave power (4.4 × 103 W m−1) have caused a persistent eastward growth of the barrier islands. The eastward extension of the barriers has been accommodated more by inlet narrowing, than by inlet migration.
It is estimated from morphological evidence that a minimum of 2.7 × 105 m3 of sand is delivered to the inlets each year via the easterly longshore transport system. Much of this sand ultimately bypasses the inlets in the form of large, migrating swash bars. The location where the swash bars attach to the beach is controlled by the amount of overlap of the ebb-tidal delta along the downdrift inlet shoreline. The configuration of the ebbtidal delta, in turn, is a function of inlet size and position of the main ebb channel. The swash bar welding process has caused preferential beach nourishment and historical shoreline progradation. Along the East Frisian Islands this process has produced barrier islands with humpbacked, bulbous updrift and bulbous downdrift shapes. The model of barrier island development presented in this paper not only explains well the configuration of the German barriers but also the morphology of barriers along many other mixed energy coasts. 相似文献
The Late Carboniferous–Early Permian Oslo Rift formed in apparently cold, stable lithosphere of the Fennoscandian Shield in a tensional stress regime widely documented in Northwest Europe at that time. The Rift formed obliquely to older, crustal structures that display only limited Permian reactivation, and, although numerical modelling suggests that the present-day lithospheric structure would serve to focus tensional stresses in the Oslo region, the assumption that no lithospheric evolution has occurred since the Palaeozoic is by no means obvious. Here, I show that, up to 5 km thick, regional-scale Late- to Post-Sveconorwegian granites in the vicinity of the Oslo Rift, with heat-production rates averaging ca. 5 μW/m3, nearly three times higher than the surrounding Sveconorwegian gneisses, would have increased the temperature in the lower crust and lithospheric mantle by up to 100 °C, resulting in significant thermal weakening of the lithosphere in this area. Given a tensional stress regime, weakening by these high heat-producing element granites would have made the Oslo area a favoured site for passive rifting and may have been a first-order parameter locating rifting to this part of the Fennoscandian Shield. The thermo-rheological effects of such granites must be considered along with other factors in future models of initial rift mechanisms in the Oslo Rift, and probably in other rifts elsewhere. 相似文献
The Scandinavian Caledonides represent a classical example of a deeply eroded Himalayan‐style orogen formed during Baltica–Laurentia continent collision. We propose that initial contact along continental‐margin promontories led to a drop in convergence rate, resulting in increased slab rollback along parts of the margin still undergoing oceanic subduction. Slab rollback caused extension of the overlying lithosphere with orogen‐wide emplacement of mafic layered intrusions, ophiolite formation and bimodal magmatism at 438–434 Ma, in what immediately thereafter became the upper plate (Laurentia) in the Scandian continent–continent collision. A compilation of magmatic ages provides evidence of long‐lived, Ordovician arc magmatism in units above the suture, which is essentially absent below the suture. This model provides a tight constraint on the timing of collision initiation, and provides a framework by which tectonic units comprising the Scandinavian Caledonides can be assigned a Baltican or more exotic heritage. 相似文献
This review paper considers the potentials of forward scatter radio techniques as a diagnostic tool in the study of stratified turbulent layers. Seven classes of experimental techniques have been considered (beamswinging, multifrequency, vertical and horizontal field strength correlation, coupling loss, pulse delay and bandwidth measurements). All these techniques with the exception of bandwidth and delay experiments measure directly or indirectly the irregularity spectrum of refractive index. Bandwidt hand delay distributions are determined by the vertical distribution of the refractivity irregularities. Thus for the purpose of obtaining information about a layered structure where our interest is focused on the vertical refractivity distribution rather than on the averaged spectral properties of the structure, the last two categories of experiments appear to represent a powerful tool. If one is interested in the spectral properties, multifrequency and beamswinging experiments are of great potential value whereas other experiments such as that measuring coupling loss are largely influenced by pure refraction effects. 相似文献