首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   453篇
  免费   13篇
  国内免费   2篇
测绘学   7篇
大气科学   43篇
地球物理   21篇
地质学   273篇
海洋学   24篇
天文学   5篇
自然地理   95篇
  2016年   2篇
  2015年   3篇
  2014年   8篇
  2013年   26篇
  2012年   7篇
  2011年   14篇
  2010年   10篇
  2009年   17篇
  2008年   12篇
  2007年   15篇
  2006年   10篇
  2005年   21篇
  2004年   15篇
  2003年   14篇
  2002年   5篇
  2001年   6篇
  2000年   10篇
  1999年   11篇
  1998年   17篇
  1997年   35篇
  1996年   26篇
  1995年   12篇
  1994年   20篇
  1993年   8篇
  1992年   7篇
  1991年   16篇
  1990年   20篇
  1989年   10篇
  1988年   12篇
  1987年   10篇
  1986年   9篇
  1985年   5篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1976年   4篇
  1973年   1篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1968年   1篇
  1967年   2篇
  1966年   2篇
  1963年   3篇
  1962年   1篇
排序方式: 共有468条查询结果,搜索用时 15 毫秒
451.
452.
453.
This paper illustrates the response of a fluvial depositional system to the interplay between peat compaction and clastic sediment supply, at a range of spatial and temporal scales, as documented by extensive exposures in an open-cast mine in the Most Basin, part of the Oligo-Miocene Ohře Rift (Eger Graben) basin system in the Czech Republic. The Most Basin is characterized by the occurrence of a number of phenomena resulting from syn- and post-depositional interactions between clastic sedimentary systems and the underlying accumulation of organic material that was the precursor of the main lignite seam of up to 45 m thickness. The studied strata are interpreted as deposits of an avulsive, mixed-load fluvial system. The large-scale depositional architecture documents an existence of at least five stratal packages up to 1500 m wide and up to several tens of metres thick, representing a record of long-term evolution of a clastic floodplain bordered by accumulating peat. Within each of the packages, several small-scale channel-belts were documented. Individual packages are separated by carbonaceous mudstones indicating a period of reduced clastic input and interpreted as due to avulsion of the fluvial channels out of the floodplain limit. Two main, mutually linked, processes controlled the evolution of the studied fluvial system: (i) syndepositional compaction of the underlying peat and (ii) avulsions of the channels away from the original floodplain, resulting in formation of a new floodplain. The processes which caused the channels of the Hrabák fluvial system to reach the avulsion threshold were: (i) decrease of rate of creation of accommodation leading to increased sinuosity and thus to a decreased channel slope, and (ii) cross-floodplain tilting of the channel belt caused by differential compaction of underlying organic-rich substratum.  相似文献   
454.
Small turbidite systems offshore from southern California provide an opportunity to track sediment from river source through the turbidity‐current initiation process to ultimate deposition, and to evaluate the impact of changing sea level and tectonics. The Santa Monica Basin is almost a closed system for terrigenous sediment input, and is supplied principally from the Santa Clara River. The Hueneme fan is supplied directly by the river, whereas the smaller Mugu and Dume fans are nourished by southward longshore drift. This study of the Late Quaternary turbidite fill of the Santa Monica Basin uses a dense grid of high‐resolution seismic‐reflection profiles tied to new radiocarbon ages for Ocean Drilling Program (ODP) Site 1015 back to 32 ka. Over the last glacial cycle, sedimentation rates in the distal part of Santa Monica Basin averaged 2–3 mm yr?1, with increases at times of extreme relative sea‐level lowstand. Coarser‐grained mid‐fan lobes prograded into the basin from the Hueneme, Mugu and Dume fans at times of rapid sea‐level fall. These pulses of coarse‐grained sediment resulted from river channel incision and delta cannibalization. During the extreme lowstand of the last glacial maximum, sediment delivery was concentrated on the Hueneme Fan, with mean depositional rates of up to 13 mm yr?1 on the mid‐ and upper fan. During the marine isotope stage (MIS) 2 transgression, enhanced rates of sedimentation of > 4 mm yr?1 occurred on the Mugu and Dume fans, as a result of distributary switching and southward littoral drift providing nourishment to these fan systems. Longer‐term sediment delivery to Santa Monica Basin was controlled by tectonics. Prior to MIS 10, the Anacapa ridge blocked the southward discharge of the Santa Clara River into the Santa Monica Basin. The pattern and distribution of turbidite sedimentation was strongly controlled by sea level through the rate of supply of coarse sediment and the style of initiation of turbidity currents. These two factors appear to have been more important than the absolute position of sea level.  相似文献   
455.
Several Holocene turbidites can be correlated across much of Navy Fan through more than 100 sediment core localities. The uppermost muddy turbidite unit is mapped throughout the northern half of the fan; its volume, grain-size distribution and the maximum height of deposition on the basin slopes are known. These parameters can be related to the precise channel morphology and mesotopography revealed by deep-tow surveys. Thus there is sufficient information to estimate detailed flow characteristics for this turbidity current as it moved from fan valley to distal basin plain. On the upper fan, the gradient and the increasing downstream width of the channel and only limited flow overspill suggest that the flow had a Froude number close to 1.0. The sediment associated with the channel indicates friction velocities of about 0.06 m s?1 and flow velocities of about 0.75 m s?1. Using this flow velocity and channel dimensions, sediment concentration (~2×10?3) and discharge are estimated, and from a knowledge of the total volume of sediment deposited, the flow duration is estimated to be from 2 to 9 days. It is shown that the estimates of Froude number, drag coefficient, and sediment concentration are not likely to vary by more than a factor of 2. On the mid-fan, the flow was much thicker than the height of the surface relief of the fan and it spread rapidly. The cross-flow slope, determined from the horizontal extent of turbidite sediment, is used to estimate flow velocity, which is confirmed by consideration of both sediment grain size and rate of deposition. This again allows sediment concentration and discharge to be estimated. The requirements of flow continuity, entrainment of water during flow expansion, and observed sediment deposition provide checks on all these estimates, and provide an integrated picture of the evolution of the flow. The flow characteristics of this muddy turbidity current are well constrained compared to those for more sand-rich late Pleistocene and early Holocene turbidity currents on the fan.  相似文献   
456.
Sedimentation in ice-covered Lake Hoare, Antarctica   总被引:2,自引:0,他引:2  
The sedimentation mechanisms that occur in ice-covered Lake Hoare, Antarctica are examined, to determine how sediment enters the lake, and how the sedimentation pattern affects blue-green algal growth at the lake bottom. The 3 m-thick ice cover contains pebbly sand as much as 2 m below the surface. Sediment with similar texture and mineralogy is found at the lake bottom. This evidence, together with the lack of sediment in the inflowing stream and the markedly different texture of sediment from the other terrains around the lake suggest that most of the sediment at the lake bottom comes in through the ice cover. Sand grains intermittently migrate through porous ice on the surface, water-filled vertical gas-channels penetrating two-thirds of the ice cover, and possibly through cracks in the ice that act as conduits. The algae at the lake bottom are able to survive in part because sediment that comes through the ice cover does not obliterate them.  相似文献   
457.
The late Pleistocene and Holocene stratigraphy of Navy Fan is mapped in detail from more than 100 cores. Thirteen 14C dates of plant detritus and of organic-rich mud beds show that a marked change in sediment supply from sandy to muddy turbidites occurred between 9000 and 12,000 years ago. They also confirm the correlation of several individual depositional units. The sediment dispersal pattern is primarily controlled by basin configuration and fan morphology, particularly the geometry of distributary channels, which show abrupt 60° bends related to the Pleistocene history of lobe progradation. The Holocene turbidity currents are depositing on, and modifying only slightly, a relict Pleistocene morphology. The uppermost turbidite is a thin sand to mud bed on the upper-fan valley levées and on parts of the mid-fan. Most of its sediment volume is in a mud bed on the lower fan and basin plain downslope from a sharp bend in the mid-fan distributary system. Little sediment occurs farther downstream within this distributary system. It appears that most of the turbidity current overtopped the levée at the channel bend, a process referred to as flow stripping. The muddy upper part of the flow continued straight down to the basin plain. The residual more sandy base of the flow in the distributary channel was not thick enough to maintain itself as gradient decreased and the channel opened out on to the mid-fan lobe. Flow stripping may occur in any turbidity current that is thick relative to channel depth and that flows in a channel with sharp bends. Where thick sandy currents are stripped, levée and mid-fan erosion may occur, but the residual current in the channel will lose much of its power and deposit rapidly. In thick muddy currents, progressive overflow of mud will cause less declaration of the residual channelised current. Thus both size and sand-to-mud ratio of turbidity currents feeding a fan are important factors controlling morphologic features and depositional areas on fans. The size-frequency variation for different types of turbidity currents is estimated from the literature and related to the evolution of fan morphology.  相似文献   
458.
Geomorphology of the Ablation Point massif, Alexander Island, Antarctica   总被引:1,自引:0,他引:1  
A coloured geomorphological map at the approximate scale of 1:50,000 is presented for the Ablation Point massif area. The main gcomorphological features have been described, such as ice and snow cover, glacial landforms and deposits (and chronology), ice marginal lakes, melt pools, gelifluction landforms and patterned ground and valley-slope landforms. The area is thought to be a good analogue for glacial-age maritime northwest Europe.  相似文献   
459.
Boström, K., & Fisher, D. E.: Lateral fluctuations in pelagic sedimentation during the Pleistocene glaciations. Boreas, Vol. 1, pp. 275–288. Oslo, 1st December, 1972.
A total of 308 sediment samples of dated cores from 7 different locations have been analyzed for several major and trace elements. Our results, as well as previously published ones, show that during the Pleistocene the pelagic sediments have high concentrations of Mn, Cu, Co, REE, etc., in deposits of glacial age and low concentrations in corresponding interglacial ones; for hemipelagic sediments the situation is reversed. This shows that the boundary between reducing hemipelagic sediments and well-oxidized pelagic sediments has been migrating laterally back and forth due to climatic variations. Such sediment sequences may be easily confused with deposits where postdepositional migration of Mn and other elements has taken place.  相似文献   
460.
Triclinic KFeSi3O8, iron-microcline, has been synthesized fromoxide mixes and by complete conversion of monoclinic KFeSi3O8,iron-sanidine. Iron-microcline is triclinic, C, a=8?68?0?01?, b=13?10?0?01, c=7?34?0?01, =90? 45'?10', ß=116?03'?10', =86?14'?10'. The optical properties (Na light) are:=1?585?0?002, ß=1?596?0?002, =1?605?0?002, 2V=85?(calc.), Xb, Z c=20??5?. A reversible phase transition betweentriclinic and monoclinic KFeSi3O8 occurs at 704??6? C at 2000bars total pressure. Iron-microcline is the low-temperaturepolymorph; no intermediate polymorphs were observed in eitherhydrothermal or dry heating experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号