首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   0篇
测绘学   1篇
大气科学   2篇
地球物理   12篇
地质学   5篇
海洋学   6篇
天文学   38篇
自然地理   7篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2008年   8篇
  2007年   4篇
  2006年   14篇
  2005年   2篇
  2004年   2篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1993年   3篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1973年   1篇
排序方式: 共有71条查询结果,搜索用时 31 毫秒
11.
12.
Generalized Born scattering of elastic waves in 3-D media   总被引:1,自引:0,他引:1  
It is well known that when a seismic wave propagates through an elastic medium with gradients in the parameters which describe it (e.g. slowness and density), energy is scattered from the incident wave generating low-frequency partial reflections. Many approximate solutions to the wave equation, e.g. geometrical ray theory (GRT), Maslov theory and Gaussian beams, do not model these signals. The problem of describing partial reflections in 1-D media has been extensively studied in the seismic literature and considerable progress has been made using iterative techniques based on WKBJ, Airy or Langer type ansätze. In this paper we derive a first-order scattering formalism to describe partial reflections in 3-D media. The correction term describing the scattered energy is developed as a volume integral over terms dependent upon the first spatial derivatives (gradients) of the parameters describing the medium and the solution. The relationship we derive could, in principle, be used as the basis for an iterative scheme but the computational expense, particularly for elastic media, will usually prohibit this approach. The result we obtain is closely related to the usual Born approximation, but differs in that the scattering term is not derived from a perturbation to a background model, but rather from the error in an approximate Green's function. We examine analytically the relationship between the results produced by the new formalism and the usual Born approximation for a medium which has no long-wavelength heterogeneities. We show that in such a case the two methods agree approximately as expected, but that in a media with heterogeneities of all wavelengths the new gradient scattering formalism is superior. We establish analytically the connection between the formalism developed here and the iterative approach based on the WKBJ solution which has been used previously in 1-D media. Numerical examples are shown to illustrate the examples discussed.  相似文献   
13.
Large disturbances in the interplanetary medium were observed by several spacecraft during a period of enhanced solar activity in early February 1986. The locations of six solar flares and the spacecraft considered here encompassed more than 100° of heliolongitude. These flares during the minimum of cycle 21 set the stage for an extensive multi-spacecraft comparison performed with a two-dimensional, magnetohydrodynamic (MHD) numerical experiment. The plasma instruments on the European Space Agency (ESA)'s GIOTTO spacecraft, on its way to encounter Comet Halley in March 1986, made measurements of the solar wind for up to 8 hours per day during February. We compare solar wind measurements from the Johnstone Plasma Analyzer (JPA) experiment on GIOTTO with the MHD simulation of the interplanetary medium throughout these events. Using plasma data obtained by the IMP-8 satellite in addition, it appears that an extended period of high solar wind speed is required as well as the simulated flares to represent the interplanetary medium in this case. We also compare the plasma and magnetometer data from VEGA-1 with the MHD simulation. This comparison tends to support an interpretation that the major solar wind changes at both GIOTTO and VEGA-1 on 8 February, 1986 were due to a shock from a W05° solar flare on 6 February, 1986 (06:25 UT). The numerical experiment is considered, qualitatively, to resemble the observations at the former spacecraft, but it has less success at the latter one.  相似文献   
14.
15.
Data from the Ion Mass Analyzer (IMA) sensor of the ASPERA-3 instrument suite on Mars Express have been analyzed to determine the mass composition of the escaping ion species at Mars. We have examined 77 different ion-beam events and we present the results in terms of flux ratios between the following ion species: CO+2/O+ and O+2/O+. The following ratios averaged over all events and energies were identified: CO+2/O+ = 0.2 and O+2/O+ = 0.9. The values measured are significantly higher, by a factor of 10 for O+2/O+, than a contemporary modeled ratio for the maximum fluxes which the martian ionosphere can supply. The most abundant ion species was found to be O+, followed by O+2 and CO+2. We estimate the loss of CO+2 to be by using the previous measurements of Phobos-2 in our calculations. The dependence of the ion ratios in relation to their energy ranges we studied, 0.3-3.0 keV, indicated that no clear correlation was found.  相似文献   
16.
As any comet nears the Sun, gas sublimes from the nucleus taking dust with it. Jupiter family comets are no exception. The neutral gas becomes ionized, and the interaction of a comet with the solar wind starts with ion pickup. This key process is also important in other solar system contexts wherever neutral particles become ionized and injected into a flowing plasma such as at Mars, Venus, Io, Titan and interstellar neutrals in the solar wind. At comets, ion pickup removes momentum and energy from the solar wind and puts it into cometary particles, which are then thermalised via plasma waves. Here we review what comets have shown us about how this process operates, and briefly look at how this can be applied in other contexts. We review the processes of pitch angle and energy scattering of the pickup ions, and the boundaries and regions in the comet-solar wind interaction. We use in-situ measurements from the four comets visited to date by spacecraft carrying plasma instrumentation: 21P/Giacobini-Zinner, 1P/Halley, 26P/Grigg-Skjellerup and 19P/Borrelly, to illustrate the process in action. While, of these, comet Halley is not a Jupiter class comet, it has told us the most about cometary plasma environments. The other comets, which are from the Jupiter family, give an interesting comparison as they have lower gas production rates and less-developed interactions. We examine the prospects for Rosetta at comet Churyumov-Gerasimenko, another Jupiter family comet where a wide range of gas production rates will be studied.  相似文献   
17.
Using ion-electron fluid parameters derived from Cassini Plasma Spectrometer (CAPS) observations within Saturn's inner magnetosphere as presented in Sittler et al. [2006a. Cassini observations of Saturn's inner plasmasphere: Saturn orbit insertion results. Planet. Space Sci., 54, 1197-1210], one can estimate the ion total flux tube content, NIONL2, for protons, H+, and water group ions, W+, as a function of radial distance or dipole L shell. In Sittler et al. [2005. Preliminary results on Saturn's inner plasmasphere as observed by Cassini: comparison with Voyager. Geophys. Res. Lett. 32(14), L14S04), it was shown that protons and water group ions dominated the plasmasphere composition. Using the ion-electron fluid parameters as boundary condition for each L shell traversed by the Cassini spacecraft, we self-consistently solve for the ambipolar electric field and the ion distribution along each of those field lines. Temperature anisotropies from Voyager plasma observations are used with (T/T)W+∼5 and (T/T)H+∼2. The radio and plasma wave science (RPWS) electron density observations from previous publications are used to indirectly confirm usage of the above temperature anisotropies for water group ions and protons. In the case of electrons we assume they are isotropic due to their short scattering time scales. When the above is done, our calculation show NIONL2 for H+ and W+ peaking near Dione's L shell with values similar to that found from Voyager plasma observations. We are able to show that water molecules are the dominant source of ions within Saturn's inner magnetosphere. We estimate the ion production rate SION∼1027 ions/s as function of dipole L using NH+, NW+ and the time scale for ion loss due to radial transport τD and ion-electron recombination τREC. The ion production shows localized peaks near the L shells of Tethys, Dione and Rhea, but not Enceladus. We then estimate the neutral production rate, SW, from our ion production rate, SION, and the time scale for loss of neutrals by ionization, τION, and charge exchange, τCH. The estimated source rate for water molecules shows a pronounced peak near Enceladus’ L shell L∼4, with a value SW∼2×1028 mol/s.  相似文献   
18.
In this paper we present two methods to derive electron fluid parameters from the CAPS–ELS spectrometer on board the Cassini spacecraft currently in orbit around Saturn. In the first part of the paper we give a basic overview of the instrument and describe the challenges inherent in the derivation of density and temperature values using these techniques. We then describe a method to calculate electron moments by integrating the particle distribution function. We also describe a second technique in which we fit the electron energy spectrum with a Gaussian curve and use the peak energy of this curve to derive density and temperature values. We then compare the two methods with particular emphasis on their application to Cassini SOI observations in the saturnian environment and point out the limitations of the two techniques. We will show that results from the two very different methods are in agreement when the physical properties of the environment and of the observed electron populations have been inferred from inspection of the raw data. Finally we will suggest future developments that will remove these limitations.  相似文献   
19.
Plasma and magnetic field measurements made onboard the Venus Express on June 1, 2006, are analyzed and compared with predictions of a global model. It is shown that in the orbit studied, the plasma and magnetic field observations obtained near the North Pole under solar minimum conditions were qualitatively and, in many cases also, quantitatively in agreement with the general picture obtained using a global numerical quasi-neutral hybrid model of the solar wind interaction (HYB-Venus). In instances where the orbit of Venus Express crossed a boundary referred to as the magnetic pileup boundary (MPB), field line tracing supports the suggestion that the MPB separates the region that is magnetically connected to the fluctuating magnetosheath field from a region that is magnetically connected to the induced magnetotail lobes.  相似文献   
20.
During the final three of the five consecutive and similar Cassini Titan flybys T55-T59 we observe a region characterized by high plasma densities (electron densities of 1-8 cm−3) in the tail/nightside of Titan. This region is observed progressively farther downtail from pass to pass and is interpreted as a plume of ionospheric plasma escaping Titan, which appears steady in both location and time. The ions in this plasma plume are moving in the direction away from Titan and are a mixture of both light and heavy ions with composition revealing that their origin are in Titan's ionosphere, while the electrons are more isotropically distributed. Magnetic field measurements indicate the presence of a current sheet at the inner edge of this region. We discuss the mechanisms behind this outflow, and suggest that it could be caused by ambipolar diffusion, magnetic moment pumping or dispersive Alfvén waves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号